Package ‘tgstat’

September 24, 2024

Type Package
Title Amos Tanay's Group High Performance Statistical Utilities
Version 2.3.28

Author Michael Hoichman [aut],
Aviezer Lifshitz [aut, cre]

Maintainer Aviezer Lifshitz <aviezer.lifshitz@weizmann.ac.il>

Description A collection of high performance utilities to compute
distance, correlation, auto correlation, clustering and other tasks.
Contains graph clustering algorithm described in * * MetaCell: analysis
of single-cell RNA-seq data using K-nn graph partitions" (Yael Baran,
Akhiad Bercovich, Arnau Sebe-Pedros, Yaniv Lubling, Amir Giladi, Elad
Chomsky, Zohar Meir, Michael Hoichman, Aviezer Lifshitz & Amos Tanay,
2019 <doi:10.1186/s13059-019-1812-2>).

License GPL-2
BugReports https://github.com/tanaylab/tgstat/issues

URL https://tanaylab.github.io/tgstat/
Depends R (>=3.5.0)

Imports utils

Suggests knitr, rmarkdown, testthat (>= 3.0.0)
VignetteBuilder knitr

Encoding UTF-8

LazyLoad yes

NeedsCompilation yes

OS_type unix

RoxygenNote 7.3.2

Config/testthat/edition 3

Repository CRAN

Date/Publication 2024-09-23 22:30:02 UTC

https://doi.org/10.1186/s13059-019-1812-2
https://github.com/tanaylab/tgstat/issues
https://tanaylab.github.io/tgstat/

2 tgs_cor

Contents
1 1) P 2
tgs_dist . . .o e 4
tgs_finite L e e e 5
tgs_grapho 6
tgs_graph_COover. e e 7
tgs_graph_cover_resample 8
tgs_ knn ..o e 10
tgs_matrix_tapply e e e 11

Index 12

tgs_cor Calculates correlation or auto-correlation
Description

Calculates correlation between two matrices columns or auto-correlation between a matrix columns.

Usage
tgs_cor(
X’
y = NULL,

pairwise.complete.obs = FALSE,
spearman = FALSE,

tidy = FALSE,
threshold = @
)
tgs_cor_knn(
X,
Y,
knn,

pairwise.complete.obs = FALSE,
spearman = FALSE,
threshold = @

Arguments
X numeric matrix
y numeric matrix

pairwise.complete.obs
see below

spearman if "TRUE’ Spearman correlation is computed, otherwise Pearson

tgs_cor 3

tidy if "TRUE’ data is outputed in tidy format
threshold absolute threshold above which values are outputed in tidy format
knn the number of highest correlations returned per column

Details

’tgs_cor’ is very similar to ’stats::cor’. Unlike the latter it uses all available CPU cores to compute
the correlation in a much faster way. The basic implementation of ’pairwise.complete.obs’ is also
more efficient giving overall great run-time advantage.

Unlike ’stats::cor’ "tgs_cor’ implements only two modes of treating data containing NA, which are
equivalent to 'use="everything"” and ’use="pairwise.complete.obs". Please refer the documentation
of this function for more details.

’tgs_cor(x, y, spearman = FALSE)’ is equivalent to ’cor(x, y, method = "pearson")’ ’tgs_cor(X, V,
spearman = TRUE)’ is equivalent to ’cor(x, y, method = "spearman")’ "tgs_cor(x, y, pairwise.complete.obs
= TRUE, spearman = TRUE)’ is equivalent to "cor(x, y, use = "pairwise.complete.obs", method =
"spearman")’ ’tgs_cor(X, y, pairwise.complete.obs = TRUE, spearman = FALSE)’ is equivalent to
’cor(x, y, use = "pairwise.complete.obs", method = "pearson")’

’tgs_cor’ can output its result in "tidy" format: a data frame with three columns named *coll’, ’col2’
and ’cor’. Only the correlation values which abs are equal or above the "threshold’ are reported.
For auto-correlation (i.e. when *y=NULL’) a pair of columns numbered X and Y is reported only if
X<Y.

’tgs_cor_knn’ works similarly to "tgs_cor’. Unlike the latter it returns only the highest ’knn’ corre-
lations for each column in ’x’. The result of "tgs_cor_knn’ is always outputed in "tidy" format.

One of the reasons to opt ’tgs_cor_knn’ over a pair of calls to 'tgs_cor’ and ’tgs_knn’ is the re-
duced memory consumption of the former. For auto-correlation case (i.e. 'y=NULL’) given that
the number of columns NC exceeds the number of rows NR, then ’tgs_cor’ memory consumption
becomes a factor of NCxNC. In contrast 'tgs_cor_knn’ would consume in the similar scenario a
factor of max(NCxNR,NCxKNN). Similarly "tgs_cor(x,y)’ would consume memory as a factor of
NCXxNCY, wherever "tgs_cor_knn(x,y,knn)” would reduce that to max((NCX+NCY)xNR,NCXxKNN).

Value

’tgs_cor_knn’ or ’tgs_cor’ with "tidy=TRUE’ return a data frame, where each row represents corre-
lation between two pairs of columns from ’x’ and ’y’ (or two columns of "x’ itself if ’y==NULL").
’tgs_cor’ with the "tidy=FALSE’ returns a matrix of correlation values, where val[X, Y] represents
the correlation between columns X and Y of the input matrices (if "y’ is not "'NULL") or the corre-
lation between columns X and Y of ’x’ (if ’y’ is 'NULL").

Examples

Note: all the available CPU cores might be used

set.seed(seed = 0)

rows <- 100

cols <- 1000

vals <- sample(1:(rows * cols / 2), rows x cols, replace = TRUE)
m <- matrix(vals, nrow = rows, ncol = cols)

mLsample(1:(rows * cols), rows * cols / 1000)] <- NA

4 tgs_dist

r1 <- tgs_cor(m, spearman = FALSE)
r2 <- tgs_cor(m, pairwise.complete.obs = TRUE, spearman = TRUE)
r3 <- tgs_cor_knn(m, NULL, 5, spearman = FALSE)

tgs_dist Calculates distances between the matrix rows

Description

Calculates distances between the matrix rows.

Usage

tgs_dist(x, diag = FALSE, upper = FALSE, tidy = FALSE, threshold = Inf)

Arguments

X numeric matrix

diag see 'dist’ documentation

upper see 'dist’ documentation

tidy if "TRUE’ data is outputed in tidy format

threshold threshold below which values are outputed in tidy format
Details

This function is very similar to *package:stats::dist’. Unlike the latter it uses all available CPU cores
to compute the distances in a much faster way.

Unlike "package:stats::dist’ ’tgs_dist’ uses always "euclidean" metrics (see 'method’ parameter of
’dist’ function). Thus:

“tgs_dist(x)’ is equivalent to *dist(x, method = "euclidean")’

’tgs_dist’ can output its result in "tidy" format: a data frame with three columns named ’'row!1’,
’row2’ and “dist’. Only the distances that are less or equal than the "threshold’ are reported. Distance
between row number X and Y is reported only if X < Y. ’diag’ and ’upper’ parameters are ignored
when the result is returned in "tidy" format.

Value

If ’tidy’ is "FALSE’ - the output is similar to that of ’dist’ function. If ’tidy’ is "TRUE’ - ’tgs_dist’
returns a data frame, where each row represents distances between two pairs of original rows.

tgs_finite

Examples

Note: all the available CPU cores might be used

set.seed(seed = 0)

rows <- 100

cols <- 1000

vals <- sample(1:(rows * cols / 2), rows * cols, replace = TRUE)
m <- matrix(vals, nrow = rows, ncol = cols)

mLsample(1:(rows * cols), rows * cols / 1000)] <- NA

r <- tgs_dist(m)

tgs_finite Checks whether all the elements of the vector are finite

Description

Checks whether all the elements of the vector are finite.

Usage

tgs_finite(x)

Arguments

X numeric or integer vector or matrix

Details

’tgs_finite’ returns *"TRUE’ if all the elements of ’x’ are finite numbers. (See: ’is.finite’.)

Value

*TRUE’ if all the elements of *x’ are finite, otherwise 'FALSE’.

Examples

tgs_finite(1:10)
tgs_finite(c(1:10, NaN))
tgs_finite(c(1:10, Inf))

tgs_graph

tgs_graph Builds directed graph of correlations

Description

Builds directed graph of correlations where the nodes are the matrix columns.

Usage

tgs_graph(x, knn, k_expand, k_beta = 3)

Arguments
X see below
knn maximal node degree
k_expand see below
k_beta see below
Details

This function builds a directed graph based on the edges in ’x’ and their ranks.

’x’ is a data frame containing 4 columns named: ’coll’, ’col2’, ’val’, ’rank’. The third column
(’val’ can have a different name). The result in the compatible format is returned, for example, by

"tgs_knn’ function.

’tgs_graph’ prunes some of the edges in "x’ based on the following steps:

1. A pair of columns i, j that appears in ’x’ in "col1’, col2’ implies the edge in the graph from i

to j: edge(i,j). Let the rank of i and j be rank(i,j).

2. Calculate symmetrised rank of i and j: sym_rank(i,j) = rank(i,j) * rank(j,i). If one of the ranks

is missing from the previous result sym_rank is set to NA.

3. Prune the edges: remove edge(i,j) if sym_rank(i,j) == NA OR sym_rank(i,j) < knn * knn *

k_expand

4. Prune excessive incoming edges: remove edge(i,j) if more than knn * k_beta edges of type

edge(node,j) exist and sym_rank(i,j) is higher than sym_rank(node,j) for node !=j.

5. Prune excessive outgoing edges: remove edge(i,j) if more than knn edges of type edge(i,node)

exist and sym_rank(i,j) is higher than sym_rank(i,node) for node !=1i.

Value

The graph edges are returned in a data frame, with the weight of each edge. edge(i,j) receives weight
1 if its sym_rank is the lowest among all edges of type edge(i,node). Formally defined: weight(i,j)
=1 - (place(i,j) - 1) / knn, where place(i,j) is the location of edge(i,j) within the sorted set of edges

outgoing from i, i.e. edge(i,node). The sort is done by sym_rank of the edges.

tgs_graph_cover 7

Examples

Note: all the available CPU cores might be used

set.seed(seed = 1)

rows <- 100

cols <- 1000

vals <- sample(1:(rows * cols / 2), rows * cols, replace = TRUE)
m <- matrix(vals, nrow = rows, ncol = cols)

mLsample(1:(rows * cols), rows * cols / 1000)] <- NA

r1 <- tgs_cor(m, pairwise.complete.obs = FALSE, spearman = TRUE)
r2 <- tgs_knn(r1, knn = 30, diag = FALSE)
r3 <- tgs_graph(r2, knn = 3, k_expand = 10)

tgs_graph_cover Clusters directed graph

Description

Clusters directed graph.

Usage

tgs_graph_cover(graph, min_cluster_size, cooling = 1.05, burn_in = 10)

Arguments

graph directed graph in the format returned by tgs_graph
min_cluster_size
used to determine the candidates for seeding (= min weight)

cooling factor that is used to gradually increase the chance of a node to stay in the cluster
burn_in number of node reassignments after which cooling is applied
Details

The algorithm is explained in a "MetaCell: analysis of single-cell RNA-seq data using K-nn graph
partitions" paper, published in "Genome Biology" #20: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-
019-1812-2

Value

Data frame that maps each node to its cluster.

8 tgs_graph_cover_resample

See Also

tgs_graph()

Examples

Note: all the available CPU cores might be used

set.seed(seed = 0)

rows <- 100

cols <- 1000

vals <- sample(1:(rows * cols / 2), rows * cols, replace = TRUE)
m <- matrix(vals, nrow = rows, ncol = cols)

mLsample(1:(rows * cols), rows * cols / 1000)] <- NA

r1 <- tgs_cor(m, pairwise.complete.obs = FALSE, spearman = TRUE)
r2 <- tgs_knn(r1, knn = 30, diag = FALSE)

r3 <- tgs_graph(r2, knn = 3, k_expand = 10)

r4 <- tgs_graph_cover(r3, 5)

tgs_graph_cover_resample

Clusters directed graph multiple times with randomized sample subset

Description

Clusters directed graph multiple times with randomized sample subset.

Usage

tgs_graph_cover_resample(
graph,
knn,
min_cluster_size,
cooling = 1.05,
burn_in = 10,
p_resamp = 0.75,
n_resamp = 500,
method = "hash”

Arguments

graph directed graph in the format returned by tgs_graph

knn maximal number of edges used per node for each sample subset

tgs_graph_cover_resample 9

min_cluster_size
used to determine the candidates for seeding (= min weight)

cooling factor that is used to gradually increase the chance of a node to stay in the cluster
burn_in number of node reassignments after which cooling is applied
p_resamp fraction of total number of nodes used in each sample subset
n_resamp number iterations the clustering is run on different sample subsets
method method for calculating co_cluster and co_sample; valid values: "hash", "full",
"edges"
Details

The algorithm is explained in a "MetaCell: analysis of single-cell RNA-seq data using K-nn graph

partitions" paper, published in "Genome Biology" #20: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-
019-1812-2

Value

If method == "hash", a list with two members. The first member is a data frame with 3 columns:
"nodel", "node2" and "cnt". "cnt" indicates the number of times "nodel" and "node2" appeared in
the same cluster. The second member of the list is a vector of number of nodes length reflecting
how many times each node was used in the subset.

If method == "full", a list containing two matrices: co_cluster and co_sample.
If method == "edges", a list containing two data frames: co_cluster and co_sample.
See Also

tgs_graph()

Examples

Note: all the available CPU cores might be used

set.seed(seed = 0)

rows <- 100

cols <- 200

vals <- sample(1:(rows * cols / 2), rows x cols, replace = TRUE)
m <- matrix(vals, nrow = rows, ncol = cols)

r1 <- tgs_cor(m, pairwise.complete.obs = FALSE, spearman = TRUE)
r2 <- tgs_knn(r1, knn = 20, diag = FALSE)

r3 <- tgs_graph(r2, knn = 3, k_expand = 10)

r4 <- tgs_graph_cover_resample(r3, 10, 1)

10 tgs_knn

tgs_knn Returns k highest values of each column

Description

Returns k highest values of each column.

Usage
tgs_knn(x, knn, diag = FALSE, threshold = 0)

Arguments
X numeric matrix or data frame (see below)
knn the number of highest values returned per column
diag if ’F’ values of row ’1’ and col ’j’ are skipped for each i ==
threshold filter out values lower than threshold
Details

’tgs_knn’ returns the highest ’knn’ values of each column of "x’ (if ’x’ is a matrix). ’x’ can be also
a sparse matrix given in a data frame of "col’, 'row’, ’value’ format.

’NA’ and ’Inf” values are skipped as well as the values below "threshold’. If ’diag’ is "F’ values of
the diagonal (row == col) are skipped too.

Value

A sparse matrix in a data frame format with ’coll’, ’col2’, ’val’ and ’rank’ columns. ’coll’ and
’col2’ represent the column and the row number of *x’.

Examples

Note: all the available CPU cores might be used

set.seed(seed = 1)

rows <- 100

cols <- 1000

vals <- sample(1:(rows * cols / 2), rows * cols, replace = TRUE)
m <- matrix(vals, nrow = rows, ncol = cols)

m[sample(1:(rows * cols), rows * cols / 1000)] <- NA

r <- tgs_knn(m, 3)

tgs_matrix_tapply 11

tgs_matrix_tapply For each matrix row apply a function over a ragged array

Description

For each matrix row apply a function to each cell of a ragged array, that is to each (non-empty)
group of values given by a unique combination of the levels of certain factors.

Usage
tgs_matrix_tapply(x, index, fun, ...)
Arguments
X a matrix or a sparse matrix of ’"dgCMatrix’ type
index a ’list’ of one or more ’factor’s, each of same length as the number of columns
in ’x’. The elements are coerced to factors by "as.factor’.
fun the function to be applied
optional arguments to ’fun’
Details

’tgs_matrix_tapply(x, index, fun)’ is essentialy an efficient implementation of *apply(mat, 1, func-
tion(x) tapply(x, index, fun))’.

Value

A matrix of length(index) X nrow(x) size. Each [i, j] element represents the result of applying
fun’ to x[i,which(index==1evels(index)[j1)].
Note that the return value is a dense matrix even when x is sparse.

Examples

Note: all the available CPU cores might be used

set.seed(seed = 1)

nr <- 6

nc <- 10

mat <- matrix(sample(c(rep(@, 6), 1:3), nr * nc, replace = TRUE), nrow = nr, ncol = nc)
index <- factor(rep_len(1:3, ncol(mat)), levels = 0:5)

r1 <- apply(mat, 1, function(x) tapply(x, index, sum))

r2 <- tgs_matrix_tapply(mat, index, sum)

Index

* ~apply
tgs_matrix_tapply, 11
* ~cluster
tgs_graph_cover, 7
tgs_graph_cover_resample, 8
* ~correlation
tgs_cor, 2
x ~distance
tgs_dist, 4
* ~finite
tgs_finite, 5
* ~graph
tgs_graph, 6
* ~knn
tgs_knn, 10
* ~tapply
tgs_matrix_tapply, 11

tgs_cor, 2

tgs_cor_knn (tgs_cor), 2
tgs_dist, 4

tgs_finite, 5

tgs_graph, 6
tgs_graph(), 8, 9
tgs_graph_cover, 7
tgs_graph_cover_resample, 8
tgs_knn, 10
tgs_matrix_tapply, 11

12

	tgs_cor
	tgs_dist
	tgs_finite
	tgs_graph
	tgs_graph_cover
	tgs_graph_cover_resample
	tgs_knn
	tgs_matrix_tapply
	Index

