
Package ‘rixpress’
January 28, 2026

Title Build Reproducible Analytical Pipelines with 'Nix'

Version 0.11.2

Description Streamlines the creation of reproducible analytical pipelines using
'default.nix' expressions generated via the 'rix' package for reproducibility. Define
derivations in 'R', 'Python' or 'Julia', chain them into a composition of pure
functions and build the resulting pipeline using 'Nix' as the underlying
end-to-end build tool. Functions to plot the pipeline as a directed acyclic
graph are included, as well as functions to load and inspect intermediary results
for interactive analysis. User experience heavily inspired by the 'targets' package.

License GPL (>= 3)

Encoding UTF-8

URL https://github.com/ropensci/rixpress/,

https://docs.ropensci.org/rixpress/

BugReports https://github.com/ropensci/rixpress/issues/

Depends R (>= 4.1.0)

Imports cli, igraph, jsonlite, processx

RoxygenNote 7.3.3

SystemRequirements Nix

Language en-GB

Suggests dplyr, ggdag, ggplot2, knitr, mockery, reticulate, rix,
rmarkdown, testthat (>= 3.0.0), usethis, visNetwork

Config/testthat/edition 3

VignetteBuilder knitr

NeedsCompilation no

Author Bruno Rodrigues [aut, cre] (ORCID:
<https://orcid.org/0000-0002-3211-3689>),

William Michael Landau [rev] (William reviewed the package (v. 0.2.0)
for rOpenSci, see
<https://github.com/ropensci/software-review/issues/706>),

Anthony Martinez [rev] (ORCID: <https://orcid.org/0000-0002-4295-0261>,

1

https://github.com/ropensci/rixpress/
https://docs.ropensci.org/rixpress/
https://github.com/ropensci/rixpress/issues/
https://orcid.org/0000-0002-3211-3689
https://github.com/ropensci/software-review/issues/706
https://orcid.org/0000-0002-4295-0261

2 Contents

Anthony reviewed the package (v. 0.2.0) for rOpenSci, see
<https://github.com/ropensci/software-review/issues/625>)

Maintainer Bruno Rodrigues <bruno@brodrigues.co>

Repository CRAN

Date/Publication 2026-01-28 18:40:02 UTC

Contents

add_import . 3
adjust_import . 4
print.rxp_derivation . 5
print.rxp_pipeline . 5
rxp_copy . 6
rxp_dag_for_ci . 7
rxp_export_artifacts . 8
rxp_ga . 9
rxp_gc . 10
rxp_ggdag . 12
rxp_import_artifacts . 13
rxp_init . 14
rxp_inspect . 15
rxp_jl . 16
rxp_jl_file . 18
rxp_list_logs . 19
rxp_load . 20
rxp_make . 21
rxp_pipeline . 22
rxp_populate . 23
rxp_py . 25
rxp_py2r . 27
rxp_py_file . 28
rxp_qmd . 29
rxp_r . 30
rxp_r2py . 32
rxp_read . 33
rxp_rmd . 34
rxp_r_file . 35
rxp_trace . 37
rxp_visnetwork . 37
rxp_write_dag . 38

Index 40

https://github.com/ropensci/software-review/issues/625

add_import 3

add_import Add an import statement to Python files in the _rixpress folder match-
ing a Nix environment name

Description

This function appends a specified import statement to the end of each Python file within the _rixpress
folder and its subdirectories, but only for files whose base name matches the provided Nix environ-
ment.

Usage

add_import(import_statement, nix_env, project_path = ".")

Arguments

import_statement

A character string representing the import statement to be added. For example,
"import numpy as np".

nix_env A character string naming the Nix environment file (e.g. "default.nix" or
"py-env.nix" or similar).

project_path Path to root of project, typically ".".

Value

No return value; the function performs in-place modifications of the files.

See Also

Other python import: adjust_import()

Examples

Not run:
add_import("import numpy as np", "default.nix")
add_import("import numpy as np", "default.nix", project_path = "path/to/project")

End(Not run)

4 adjust_import

adjust_import Adjust Python import statements

Description

When calling rxp_populate(), a file containing Python import statements is automatically gen-
erated inside the _rixpress folder. For example, if the numpy package is needed, the file will
include a line like "import numpy". However, Python programmers often write "import numpy as
np" instead.

Usage

adjust_import(old_import, new_import, project_path = ".")

Arguments

old_import A character string representing the import statement to be replaced. For exam-
ple, "import pillow".

new_import A character string representing the new import statement to replace with. For
example, "from PIL import Image".

project_path Path to root of project, typically ".".

Details

In some cases, the correct import statement is entirely different. For example, for the pillow
package, the generated file will contain "import pillow", which is incorrect—Python code should
import from the PIL namespace instead, e.g., "from PIL import Image".

Because these adjustments cannot be automated reliably, the adjust_import() function allows
you to search and replace import statements programmatically. It reads each file in the _rixpress
folder, performs the replacement, and writes the modified content back to the file.

Value

No return value; the function performs in-place modifications of the files.

See Also

Other python import: add_import()

Examples

Not run:
adjust_import("import pillow", "from PIL import Image")
adjust_import("import pillow", "from PIL import Image", project_path = "path/to/project")

End(Not run)

print.rxp_derivation 5

print.rxp_derivation Print method for derivation objects

Description

Print method for derivation objects

Usage

S3 method for class 'rxp_derivation'
print(x, ...)

Arguments

x An object of class "rxp_derivation"

... Additional arguments passed to print methods

Value

Nothing, prints a summary of the derivation object to the console.

See Also

Other utilities: rxp_copy(), rxp_gc(), rxp_init(), rxp_inspect(), rxp_list_logs(), rxp_load(),
rxp_read(), rxp_trace()

Examples

Not run:
d0 is a previously defined derivation

print(d0)

End(Not run)

print.rxp_pipeline Print method for rxp_pipeline objects

Description

Print method for rxp_pipeline objects

Usage

S3 method for class 'rxp_pipeline'
print(x, ...)

6 rxp_copy

Arguments

x An object of class "rxp_pipeline"

... Additional arguments passed to print methods

Value

Nothing, prints a summary of the pipeline object to the console.

rxp_copy Copy derivations from the Nix store to current working directory

Description

When Nix builds a derivation, its output is saved in the Nix store located under /nix/store/. Even
though you can import the derivations into the current R session using rxp_read() or rxp_load(),
it can be useful to copy the outputs to the current working directory. This is especially useful for
Quarto documents, where there can be more than one input, as is the case for html output.

Usage

rxp_copy(derivation_name = NULL, dir_mode = "0755", file_mode = "0644")

Arguments

derivation_name

The name of the derivation to copy. If empty, then all the derivations are copied.

dir_mode Character, default "0755". POSIX permission mode to apply to directories under
the copied output (including the top-level output directory).

file_mode Character, default "0644". POSIX permission mode to apply to files under the
copied output.

Value

Nothing, the contents of the Nix store are copied to the current working directory.

See Also

Other utilities: print.rxp_derivation(), rxp_gc(), rxp_init(), rxp_inspect(), rxp_list_logs(),
rxp_load(), rxp_read(), rxp_trace()

rxp_dag_for_ci 7

Examples

Not run:
Copy all derivations to the current working directory
rxp_copy()

Copy a specific derivation
rxp_copy("mtcars")

Copy with custom permissions (e.g., make scripts executable)
rxp_copy("my_deriv", dir_mode = "0755", file_mode = "0644")

Copy a Quarto document output with multiple files
rxp_copy("my_quarto_doc")

End(Not run)

rxp_dag_for_ci Export DAG of pipeline and prepare it for rendering on CI

Description

This function generates a DOT file representation of the pipeline DAG, suitable for visualization,
potentially on CI platforms. It is called by rxp_ga().

Usage

rxp_dag_for_ci(
nodes_and_edges = get_nodes_edges(),
output_file = "_rixpress/dag.dot"

)

Arguments

nodes_and_edges

List, output of get_nodes_edges(). Defaults to calling get_nodes_edges().

output_file Character, the path where the DOT file should be saved. Defaults to "_rixpress/dag.dot".
The directory will be created if it doesn’t exist.

Value

Nothing, writes the DOT file to the specified output_file.

See Also

Other ci utilities: rxp_ga(), rxp_write_dag()

8 rxp_export_artifacts

Examples

Not run:
Generate the default _rixpress/dag.dot
rxp_dag_for_ci()

End(Not run)

rxp_export_artifacts Export Nix store paths to an archive

Description

Creates a single archive file containing the specified Nix store paths and their dependencies. This
archive can be transferred to another machine and imported into its Nix store.

Usage

rxp_export_artifacts(
archive_file = "_rixpress/pipeline_outputs.nar",
which_log = NULL,
project_path = "."

)

Arguments

archive_file Character, path to the archive, defaults to "_rixpress/pipeline-outputs.nar"

which_log Character or NULL, regex pattern to match a specific log file. If NULL (default),
the most recent log file will be used.

project_path Character, defaults to ".". Path to the root directory of the project.

Value

Nothing, creates an archive file at the specified location.

See Also

Other archive caching functions: rxp_import_artifacts()

Examples

Not run:
Export the most recent build to the default location
rxp_export_artifacts()

Export a specific build to a custom location
rxp_export_artifacts(
archive_file = "my_archive.nar",

rxp_ga 9

which_log = "20250510"
)

End(Not run)

rxp_ga Run a pipeline on GitHub Actions

Description

Run a pipeline on GitHub Actions

Usage

rxp_ga()

Details

This function puts a .yaml file inside the .github/workflows/ folder on the root of your project.
This workflow file expects both scripts generated by rxp_init(), gen-env.R and gen-pipeline.R
to be present. If that’s not the case, edit the .yaml file accordingly. Build artifacts are archived and
restored automatically between runs. Make sure to give read and write permissions to the GitHub
Actions bot.

Value

Nothing, copies file to a directory.

See Also

Other ci utilities: rxp_dag_for_ci(), rxp_write_dag()

Examples

Not run:
rxp_ga()

End(Not run)

10 rxp_gc

rxp_gc Garbage Collect Rixpress Build Artifacts and Logs

Description

This function performs garbage collection on Nix store paths and build log files generated by rix-
press. It can operate in two modes: full garbage collection (when keep_since = NULL) or targeted
deletion based on log file age.

Usage

rxp_gc(
keep_since = NULL,
project_path = ".",
dry_run = FALSE,
timeout_sec = 300,
verbose = FALSE,
ask = TRUE

)

Arguments

keep_since Date or character string (YYYY-MM-DD format). If provided, only build logs
older than this date will be targeted for deletion, along with their associated Nix
store paths. If NULL, performs a full Nix garbage collection. Default is NULL.

project_path Character string specifying the path to the project directory containing the _rixpress
folder with build logs. Default is "." (current directory).

dry_run Logical. If TRUE, shows what would be deleted without actually performing any
deletions. Useful for previewing the cleanup operation. Default is FALSE.

timeout_sec Numeric. Timeout in seconds for individual Nix commands. Also used for
concurrency lock expiration. Default is 300 seconds.

verbose Logical. If TRUE, provides detailed output including full paths, command out-
puts, and diagnostic information about references preventing deletion. Default
is FALSE.

ask Logical. If TRUE, ask for user confirmation before performing deleting artifacts.
Default is TRUE.

Details

The function operates in two modes:

Full Garbage Collection Mode (keep_since = NULL):

• Runs nix-store --gc to delete all unreferenced store paths

• Does not delete any build log files

• Suitable for complete cleanup of unused Nix store paths

rxp_gc 11

Targeted Deletion Mode (keep_since specified):

• Identifies build logs older than the specified date

• Extracts store paths from old logs using rxp_inspect()

• Protects recent store paths by creating temporary GC roots

• Attempts to delete old store paths individually using nix-store --delete

• Deletes the corresponding build log .json files from _rixpress/

• Handles referenced paths gracefully (paths that cannot be deleted due to dependencies)

Concurrency Safety: The function uses a lock file mechanism to prevent multiple instances from
running simultaneously, which could interfere with each other’s GC root management.

Reference Handling: Some store paths may not be deletable because they are still referenced by:

• User or system profile generations

• Active Nix shell environments

• Result symlinks in project directories

• Other store paths that depend on them

These paths are reported but not considered errors.

Value

Invisibly returns a list with cleanup summary information:

• kept: Vector of build log filenames that were kept

• deleted: Vector of build log filenames targeted for deletion

• protected: Number of store paths protected via GC roots (date-based mode)

• deleted_count: Number of store paths successfully deleted

• failed_count: Number of store paths that failed to delete

• referenced_count: Number of store paths skipped due to references

• log_files_deleted: Number of build log files successfully deleted

• log_files_failed: Number of build log files that failed to delete

• dry_run_details: List of detailed information when dry_run = TRUE

See Also

rxp_list_logs, rxp_inspect

Other utilities: print.rxp_derivation(), rxp_copy(), rxp_init(), rxp_inspect(), rxp_list_logs(),
rxp_load(), rxp_read(), rxp_trace()

12 rxp_ggdag

Examples

Not run:
Preview what would be deleted (dry run)
rxp_gc(keep_since = "2025-08-01", dry_run = TRUE, verbose = TRUE)

Delete artifacts from builds older than August 1st, 2025
rxp_gc(keep_since = "2025-08-01")

Full garbage collection of all unreferenced store paths
rxp_gc()

Clean up artifacts older than 30 days ago
rxp_gc(keep_since = Sys.Date() - 30)

End(Not run)

rxp_ggdag Create a Directed Acyclic Graph (DAG) representing the pipeline us-
ing {ggplot2}

Description

Uses {ggdag} to generate the plot. {ggdag} is a soft dependency of {rixpress} so you need to
install it to use this function. When derivations are organized into pipelines using rxp_pipeline(),
nodes use a dual-encoding approach: the interior fill shows the derivation type (R, Python, etc.)
while a thick border shows the pipeline group colour.

Usage

rxp_ggdag(
nodes_and_edges = get_nodes_edges(),
color_by = c("pipeline", "type"),
colour_by = NULL

)

Arguments

nodes_and_edges

List, output of get_nodes_edges().

color_by Character, either "pipeline" (default) or "type". When "pipeline", nodes show
type as fill colour and pipeline as border. When "type", nodes are coloured
entirely by derivation type (rxp_r, rxp_py, etc.).

colour_by Character, alias for color_by.

Value

A {ggplot2} object.

rxp_import_artifacts 13

See Also

Other visualisation functions: rxp_visnetwork()

Examples

Not run:
rxp_ggdag() # Dual encoding: fill = type, border = pipeline
rxp_ggdag(color_by = "type") # Color entirely by derivation type

End(Not run)

rxp_import_artifacts Import Nix store paths from an archive

Description

Imports the store paths contained in an archive file into the local Nix store. Useful for transferring
built outputs between machines.

Usage

rxp_import_artifacts(archive_file = "_rixpress/pipeline_outputs.nar")

Arguments

archive_file Character, path to the archive, defaults to "_rixpress/pipeline-outputs.nar"

Value

Nothing, imports the archive contents into the local Nix store.

See Also

Other archive caching functions: rxp_export_artifacts()

Examples

Not run:
Import from the default archive location
rxp_import_artifacts()

Import from a custom archive file
rxp_import_artifacts("path/to/my_archive.nar")

End(Not run)

14 rxp_init

rxp_init Initialize rixpress project

Description

Generates gen-env.R and gen-pipeline.R scripts in the specified project directory, after asking
the user for confirmation. If the user declines, no changes are made.

Usage

rxp_init(project_path = ".", skip_prompt = FALSE)

Arguments

project_path Character string specifying the project’s path.

skip_prompt Logical. If TRUE, skips all confirmation prompts and proceeds with initializa-
tion, useful on continuous integration. Defaults to FALSE.

Details

Creates (overwriting if they already exist):

• gen-env.R: Script to define an execution environment with {rix}.

• gen-pipeline.R: Defines a data pipeline with {rixpress}.

Value

Logical. Returns TRUE if initialization was successful, FALSE if the operation was cancelled by
the user.

See Also

Other utilities: print.rxp_derivation(), rxp_copy(), rxp_gc(), rxp_inspect(), rxp_list_logs(),
rxp_load(), rxp_read(), rxp_trace()

Examples

Default usage (will prompt before any action)
Not run:

rxp_init()

End(Not run)

rxp_inspect 15

rxp_inspect Inspect the build result of a pipeline.

Description

Returns a data frame with four columns: - derivation: the name of the derivation - build_success:
whether the build was successful or not - path: the path of this derivation in the Nix store - output:
the output, if this derivation was built successfully. Empty outputs mean that this derivation was not
built successfully. Several outputs for a single derivation are possible. In the derivation column
you will find an object called all-derivations. This object is generated automatically for internal
purposes, and you can safely ignore it.

Usage

rxp_inspect(project_path = ".", which_log = NULL)

Arguments

project_path Character, defaults to ".". Path to the root directory of the project.

which_log Character, defaults to NULL. If NULL the most recent build log is used. If a
string is provided, it’s used as a regular expression to match against available
log files.

Value

A data frame with derivation names, if their build was successful, their paths in the /nix/store, and
their build outputs.

See Also

Other utilities: print.rxp_derivation(), rxp_copy(), rxp_gc(), rxp_init(), rxp_list_logs(),
rxp_load(), rxp_read(), rxp_trace()

Examples

Not run:
Inspect the most recent build
build_results <- rxp_inspect()

Inspect a specific build log
build_results <- rxp_inspect(which_log = "20250510")

Check which derivations failed
failed <- subset(build_results, !build_success)

End(Not run)

16 rxp_jl

rxp_jl Create a Nix expression running a Julia function

Description

Create a Nix expression running a Julia function

Usage

rxp_jl(
name,
expr,
additional_files = "",
user_functions = "",
nix_env = "default.nix",
encoder = NULL,
decoder = NULL,
env_var = NULL,
noop_build = FALSE

)

Arguments

name Symbol, name of the derivation.

expr Character, Julia code to generate the expression. Ideally it should be a call to a
pure function. Multi-line expressions are not supported.

additional_files

Character vector, additional files to include during the build process. For exam-
ple, if a function expects a certain file to be available, this is where you should
include it.

user_functions Character vector, user-defined functions to include. This should be a script (or
scripts) containing user-defined functions to include during the build process
for this derivation. It is recommended to use one script per function, and only
include the required script(s) in the derivation.

nix_env Character, path to the Nix environment file, default is "default.nix".

encoder Character, defaults to NULL. The name of the Julia function used to serialize
the object. It must accept two arguments: the object to serialize (first), and
the target file path (second). If NULL, the default behaviour uses the built-in
Serialization.serialize API. Define any custom serializer in functions.jl.
See vignette("encoding-decoding") for more details.

decoder Character or named vector/list, defaults to NULL. Can be:

• A single string for the Julia function to unserialize all upstream objects
• A named vector/list where names are upstream dependency names and val-

ues are their specific unserialize functions If NULL, the default is Serialization.deserialize.
See vignette("encoding-decoding") for more details.

rxp_jl 17

env_var Character vector, defaults to NULL. A named vector of environment variables to
set before running the Julia script, e.g., c("JULIA_DEPOT_PATH" = "/path/to/depot").
Each entry will be added as an export statement in the build phase.

noop_build Logical, defaults to FALSE. If TRUE, the derivation produces a no-op build (a
stub output with no actual build steps). Any downstream derivations depending
on a no-op build will themselves also become no-op builds.

Details

At a basic level, rxp_jl(filtered_data, "filter(df, :col .> 10)") is equivalent to filtered_data = filter(df, :col .> 10)
in Julia. rxp_jl() generates the required Nix boilerplate to output a so-called "derivation" in Nix
jargon. A Nix derivation is a recipe that defines how to create an output (in this case filtered_data)
including its dependencies, build steps, and output paths.

Value

An object of class derivation which inherits from lists.

See Also

Other derivations: rxp_jl_file(), rxp_py(), rxp_py_file(), rxp_qmd(), rxp_r(), rxp_r_file(),
rxp_rmd()

Examples

Not run:
Basic usage, no custom serializer
rxp_jl(

name = filtered_df,
expr = "filter(df, :col .> 10)"

)

Skip building this derivation
rxp_jl(

name = model_result,
expr = "train_model(data)",
noop_build = TRUE

)

Custom serialization: assume `save_my_obj(obj, path)` is defined in functions.jl
rxp_jl(

name = model_output,
expr = "train_model(data)",
encoder = "save_my_obj",
user_functions = "functions.jl"

)

End(Not run)

18 rxp_jl_file

rxp_jl_file Creates a Nix expression that reads in a file (or folder of data) using
Julia.

Description

Creates a Nix expression that reads in a file (or folder of data) using Julia.

Usage

rxp_jl_file(...)

Arguments

... Arguments passed on to rxp_file

name Symbol, the name of the derivation.
path Character, the file path to include (e.g., "data/mtcars.shp") or a folder path

(e.g., "data"). See details.
read_function Function, an R function to read the data, taking one argument

(the path). This can be a user-defined function that is made available using
user_functions. See details.

user_functions Character vector, user-defined functions to include. This should
be a script (or scripts) containing user-defined functions to include during
the build process for this derivation. It is recommended to use one script
per function, and only include the required script(s) in the derivation.

nix_env Character, path to the Nix environment file, default is "default.nix".
env_var List, defaults to NULL. A named list of environment variables to set

before running the R script, e.g., c(VAR = "hello"). Each entry will be
added as an export statement in the build phase.

encoder Function/character, defaults to NULL. A language-specific serializer
to write the loaded object to disk.

• R: function/symbol/character (e.g., qs::qsave) taking (object, path).
Defaults to saveRDS.

• Python: character name of a function taking (object, path). Defaults
to using pickle.dump.

• Julia: character name of a function taking (object, path). Defaults
to using Serialization.serialize.

Details

The basic usage is to provide a path to a file, and the function to read it. For example: rxp_r_file(mtcars,
path = "data/mtcars.csv", read_function = read.csv). It is also possible instead to point to a
folder that contains many files that should all be read at once, for example: rxp_r_file(many_csvs, path = "data", read_function = \(x)(readr::read_csv(list.files(x, full.names = TRUE, pattern = ".csv$")))).
See the vignette("importing-data") vignette for more detailed examples.

rxp_list_logs 19

Value

An object of class rxp_derivation.

See Also

Other derivations: rxp_jl(), rxp_py(), rxp_py_file(), rxp_qmd(), rxp_r(), rxp_r_file(),
rxp_rmd()

rxp_list_logs List all available build logs

Description

Returns a data frame with information about all build logs in the project’s _rixpress directory.

Usage

rxp_list_logs(project_path = ".")

Arguments

project_path Character, defaults to ".". Path to the root directory of the project.

Value

A data frame with log filenames, modification times, and file sizes.

See Also

Other utilities: print.rxp_derivation(), rxp_copy(), rxp_gc(), rxp_init(), rxp_inspect(),
rxp_load(), rxp_read(), rxp_trace()

Examples

Not run:
List all build logs in the current project
logs <- rxp_list_logs()

List logs from a specific project directory
logs <- rxp_list_logs("path/to/project")

End(Not run)

20 rxp_load

rxp_load Load output of a derivation

Description

Loads the output of derivations in the parent frame of the current session, returns a path if reading
directly is not possible.

Usage

rxp_load(derivation_name, which_log = NULL, project_path = ".")

Arguments

derivation_name

Character, the name of the derivation.

which_log Character, defaults to NULL. If NULL the most recent build log is used. If a
string is provided, it’s used as a regular expression to match against available
log files.

project_path Character, defaults to ".". Path to the root directory of the project.

Details

When derivation_name points to a single R object, it gets loaded in the current session using
assign(..., envir = parent.frame()), which corresponds to the global environment in a reg-
ular interactive session. If you’re trying to load a Python object and {reticulate} is available,
reticulate::py_load_object() is used and then the object gets loaded into the global environ-
ment. In case the derivation is pointing to several outputs (which can happen when building a
Quarto document for example) or loading fails, the path to the object is returned instead.

Value

Nothing, this function has the side effect of loading objects into the parent frame.

See Also

Other utilities: print.rxp_derivation(), rxp_copy(), rxp_gc(), rxp_init(), rxp_inspect(),
rxp_list_logs(), rxp_read(), rxp_trace()

Examples

Not run:
Load an R object
rxp_load("mtcars")

Load a Python object
rxp_load("my_python_model")

rxp_make 21

Load from a specific build log
rxp_load("mtcars", which_log = "2025-05-10")

End(Not run)

rxp_make Build pipeline using Nix

Description

Runs nix-build with a quiet flag, outputting to _rixpress/result.

Usage

rxp_make(verbose = 0L, max_jobs = 1, cores = 1)

Arguments

verbose Integer, defaults to 0L. Verbosity level: 0 = show progress indicators only, 1+
= show nix output with increasing verbosity. 0: "Progress only", 1: "Informa-
tional", 2: "Talkative", 3: "Chatty", 4: "Debug", 5: "Vomit". Values higher than
5 are capped to 5. Each level adds one –verbose flag to nix-store command.

max_jobs Integer, number of derivations to be built in parallel.

cores Integer, number of cores a derivation can use during build.

Value

A character vector of paths to the built outputs.

See Also

Other pipeline functions: rxp_pipeline(), rxp_populate()

Examples

Not run:
Build the pipeline with progress indicators (default)
rxp_make()

Build with verbose output and parallel execution
rxp_make(verbose = 2, max_jobs = 4, cores = 2)

Maximum verbosity
rxp_make(verbose = 3)

End(Not run)

22 rxp_pipeline

rxp_pipeline Create a named pipeline of derivations

Description

Groups multiple derivations into a named pipeline for organizational purposes. This allows you to
structure large projects into logical sub-pipelines (e.g., "ETL", "Model", "Report") that are visually
distinguished in DAG visualizations.

Usage

rxp_pipeline(name, path, color = NULL, ...)

Arguments

name Character, the name of the pipeline (e.g., "ETL", "Model").

path Character path to an R script returning a list of derivations, OR a list of derivation
objects created by rxp_r(), rxp_py(), etc.

color Character, optional. A CSS color name (e.g., "darkorange") or hex code (e.g.,
"#FF5733") to use for this pipeline’s nodes in DAG visualizations. If NULL, a
default color will be assigned.

... Additional arguments (currently unused, reserved for future use).

Details

The rxp_pipeline() function is used to organize derivations into logical groups. When passed
to rxp_populate(), the derivations are flattened but retain their group and color metadata, which
is then used in DAG visualizations (rxp_visnetwork() and rxp_ggdag()) to distinguish different
parts of your workflow.

This pattern enables a "Master Script" workflow where you can define sub-pipelines in separate R
scripts that each return a list of derivations. You then pass the paths to these scripts to rxp_pipeline():

Value

An object of class rxp_pipeline containing the derivations with pipeline metadata attached.

See Also

Other pipeline functions: rxp_make(), rxp_populate()

Examples

Not run:
Define derivations in separate scripts
pipelines/01_etl.R returns: list(rxp_r(...), rxp_r(...))
pipelines/02_model.R returns: list(rxp_r(...), rxp_r(...))

rxp_populate 23

Master script (run.R):

Create named pipelines with colors by pointing to the files
pipe_etl <- rxp_pipeline("ETL", "pipelines/01_etl.R", color = "darkorange")
pipe_model <- rxp_pipeline("Model", "pipelines/02_model.R", color = "dodgerblue")

Build the combined pipeline
rxp_populate(list(pipe_etl, pipe_model))
rxp_make()

Visualize - ETL nodes will be orange, Model nodes will be blue
rxp_visnetwork()

End(Not run)

rxp_populate Generate Nix Pipeline Code

Description

Generate Nix Pipeline Code

Usage

rxp_populate(derivs, project_path = ".", build = FALSE, py_imports = NULL, ...)

Arguments

derivs A list of derivation objects, where each object is a list of five elements:
• name, name of the derivation,
• snippet, the nix code snippet to build this derivation,
• type, can be R, Python or Quarto,
• additional_files, character vector of paths to files to make available to build

sandbox,
• nix_env, path to Nix environment to build this derivation. A single deriv is

the output of rxp_r(), rxp_qmd() or rxp_py() function.
project_path Path to root of project, defaults to ".".
build Logical, defaults to FALSE. Should the pipeline get built right after being gen-

erated? When FALSE, use rxp_make() to build the pipeline at a later stage.
py_imports Named character vector of Python import rewrites. Names are the base modules

that rixpress auto-imports as "import name", and values are the desired import
lines. For example: c(numpy = "import numpy as np", xgboost = "from xgboost
import XGBClassifier"). Each entry is applied by replacing "import name" with
the provided string across generated _rixpress Python library files.

... Further arguments passed down to methods. Use max-jobs and cores to set
parallelism during build. See the documentation of rxp_make() for more de-
tails.

24 rxp_populate

Details

This function generates a pipeline.nix file based on a list of derivation objects. Each derivation
defines a build step, and rxp_populate() chains these steps and handles the serialization and
conversion of Python objects into R objects (or vice-versa). Derivations are created with rxp_r(),
rxp_py() and so on. By default, the pipeline is also immediately built after being generated, but
the build process can be postponed by setting build to FALSE. In this case, the pipeline can then
be built using rxp_make() at a later stage. The generated pipeline.nix expression includes:

• the required imports of environments, typically default.nix files generated by the rix pack-
age;

• correct handling of interdependencies of the different derivations;

• serialization and deserialization of both R and Python objects, and conversion between them
when objects are passed from one language to another;

• correct loading of R and Python packages, or extra functions needed to build specific targets

The _rixpress folder contains:

• R, Python or Julia scripts to load the required packages that need to be available to the pipeline.

• a JSON file with the DAG of the pipeline, used for visualisation, and to allow rxp_populate()
to generate the right dependencies between derivations.

• .rds files with build logs, required for rxp_inspect() and rxp_gc(). See vignette("debugging")
for more details.

Inline Python import adjustments In some cases, due to the automatic handling of Python packages,
users might want to change import statements. By default if, say, pandas is needed to build a
derivation, it will be imported with import pandas. However, Python programmers typically use
import pandas as pd. You can either:

• use py_imports to rewrite these automatically during population, or

• use adjust_import() and add_import() for advanced/manual control. See vignette("polyglot")
for more details.

Value

Nothing, writes a file called pipeline.nix with the Nix code to build the pipeline, as well as folder
called _rixpress with required internal files.

See Also

Other pipeline functions: rxp_make(), rxp_pipeline()

Examples

Not run:
Create derivation objects
d1 <- rxp_r(mtcars_am, filter(mtcars, am == 1))
d2 <- rxp_r(mtcars_head, head(mtcars_am))
list_derivs <- list(d1, d2)

rxp_py 25

Generate and build in one go
rxp_populate(derivs = list_derivs, project_path = ".", build = TRUE)

Or only populate, with inline Python import adjustments
rxp_populate(

derivs = list_derivs,
project_path = ".",
build = FALSE,
py_imports = c(pandas = "import pandas as pd")

)
Then later:
rxp_make()

End(Not run)

rxp_py Create a Nix expression running a Python function

Description

Create a Nix expression running a Python function

Usage

rxp_py(
name,
expr,
additional_files = "",
user_functions = "",
nix_env = "default.nix",
encoder = NULL,
decoder = NULL,
env_var = NULL,
noop_build = FALSE

)

Arguments

name Symbol, name of the derivation.
expr Character, Python code to generate the expression. Ideally it should be a call to

a pure function. Multi-line expressions are not supported.
additional_files

Character vector, additional files to include during the build process. For exam-
ple, if a function expects a certain file to be available, this is where you should
include it.

user_functions Character vector, user-defined functions to include. This should be a script (or
scripts) containing user-defined functions to include during the build process
for this derivation. It is recommended to use one script per function, and only
include the required script(s) in the derivation.

26 rxp_py

nix_env Character, path to the Nix environment file, default is "default.nix".

encoder Character, defaults to NULL. The name of the Python function used to serialize
the object. It must accept two arguments: the object to serialize (first), and
the target file path (second). If NULL, the default behaviour uses pickle.dump.
Define this function in functions.py. See vignette("encoding-decoding")
for more details.

decoder Character or named vector/list, defaults to NULL. Can be:

• A single string for the Python function to unserialize all upstream objects
• A named vector/list where names are upstream dependency names and

values are their specific unserialize functions If NULL, the default uses
pickle.load. See vignette("encoding-decoding") for more details.

env_var Character vector, defaults to NULL. A named vector of environment variables
before running the Python script, e.g., c(PYTHONPATH = "/path/to/modules").
Each entry will be added as an export statement in the build phase.

noop_build Logical, defaults to FALSE. If TRUE, the derivation produces a no-op build (a
stub output with no actual build steps). Any downstream derivations depending
on a no-op build will themselves also become no-op builds.

Details

At a basic level, rxp_py(mtcars_am, "mtcars.filter(polars.col('am') == 1).to_pandas()")
is equivalent to mtcars_am = mtcars.filter(polars.col('am') == 1).to_pandas(). rxp_py()
generates the required Nix boilerplate to output a so-called "derivation" in Nix jargon. A Nix
derivation is a recipe that defines how to create an output (in this case mtcars_am) including its
dependencies, build steps, and output paths.

Value

An object of class derivation which inherits from lists.

See Also

Other derivations: rxp_jl(), rxp_jl_file(), rxp_py_file(), rxp_qmd(), rxp_r(), rxp_r_file(),
rxp_rmd()

Examples

Not run:
rxp_py(
mtcars_pl_am,
expr = "mtcars_pl.filter(polars.col('am') == 1).to_pandas()"

)

Skip building this derivation
rxp_py(

data_prep,
expr = "preprocess_data(raw_data)",
noop_build = TRUE

)

rxp_py2r 27

Custom serialization
rxp_py(

mtcars_pl_am,
expr = "mtcars_pl.filter(polars.col('am') == 1).to_pandas()",
user_functions = "functions.py",
encoder = "serialize_model",
additional_files = "some_required_file.bin")

End(Not run)

rxp_py2r Transfer Python object into an R session.

Description

Transfer Python object into an R session.

Usage

rxp_py2r(name, expr, nix_env = "default.nix")

Arguments

name Symbol, name of the derivation.

expr Symbol, Python object to be loaded into R.

nix_env Character, path to the Nix environment file, default is "default.nix".

Details

rxp_py2r(my_obj, my_python_object) loads a serialized Python object and saves it as an RDS
file using reticulate::py_load_object().

Value

An object of class rxp_derivation.

See Also

Other interop functions: rxp_r2py()

28 rxp_py_file

rxp_py_file Creates a Nix expression that reads in a file (or folder of data) using
Python.

Description

Creates a Nix expression that reads in a file (or folder of data) using Python.

Usage

rxp_py_file(...)

Arguments

... Arguments passed on to rxp_file

name Symbol, the name of the derivation.
path Character, the file path to include (e.g., "data/mtcars.shp") or a folder path

(e.g., "data"). See details.
read_function Function, an R function to read the data, taking one argument

(the path). This can be a user-defined function that is made available using
user_functions. See details.

user_functions Character vector, user-defined functions to include. This should
be a script (or scripts) containing user-defined functions to include during
the build process for this derivation. It is recommended to use one script
per function, and only include the required script(s) in the derivation.

nix_env Character, path to the Nix environment file, default is "default.nix".
env_var List, defaults to NULL. A named list of environment variables to set

before running the R script, e.g., c(VAR = "hello"). Each entry will be
added as an export statement in the build phase.

encoder Function/character, defaults to NULL. A language-specific serializer
to write the loaded object to disk.

• R: function/symbol/character (e.g., qs::qsave) taking (object, path).
Defaults to saveRDS.

• Python: character name of a function taking (object, path). Defaults
to using pickle.dump.

• Julia: character name of a function taking (object, path). Defaults
to using Serialization.serialize.

Details

The basic usage is to provide a path to a file, and the function to read it. For example: rxp_r_file(mtcars,
path = "data/mtcars.csv", read_function = read.csv). It is also possible instead to point to a
folder that contains many files that should all be read at once, for example: rxp_r_file(many_csvs, path = "data", read_function = \(x)(readr::read_csv(list.files(x, full.names = TRUE, pattern = ".csv$"))))
See the vignette("importing-data") vignette for more detailed examples.

rxp_qmd 29

Value

An object of class rxp_derivation.

See Also

Other derivations: rxp_jl(), rxp_jl_file(), rxp_py(), rxp_qmd(), rxp_r(), rxp_r_file(),
rxp_rmd()

rxp_qmd Render a Quarto document as a Nix derivation

Description

Render a Quarto document as a Nix derivation

Usage

rxp_qmd(
name,
qmd_file,
additional_files = "",
nix_env = "default.nix",
args = "",
env_var = NULL,
noop_build = FALSE

)

Arguments

name Symbol, derivation name.

qmd_file Character, path to .qmd file.
additional_files

Character vector, additional files to include, for example a folder containing
images to include in the Quarto document.

nix_env Character, path to the Nix environment file, default is "default.nix".

args A character of additional arguments to be passed directly to the quarto com-
mand.

env_var List, defaults to NULL. A named list of environment variables to set before run-
ning the Quarto render command, e.g., c(QUARTO_PROFILE = "production").
Each entry will be added as an export statement in the build phase.

noop_build Logical, defaults to FALSE. If TRUE, the derivation produces a no-op build (a
stub output with no actual build steps). Any downstream derivations depending
on a no-op build will themselves also become no-op builds.

30 rxp_r

Details

To include built derivations in the document, rxp_read("derivation_name") should be put in the
.qmd file.

Value

An object of class derivation which inherits from lists.

See Also

Other derivations: rxp_jl(), rxp_jl_file(), rxp_py(), rxp_py_file(), rxp_r(), rxp_r_file(),
rxp_rmd()

Examples

Not run:
Compile a .qmd file to a pdf using typst
`images` is a folder containing images to include in the Quarto doc
rxp_qmd(

name = report,
qmd_file = "report.qmd",
additional_files = "images",
args = "--to typst"

)

Skip building this derivation
rxp_qmd(

name = draft_report,
qmd_file = "draft.qmd",
noop_build = TRUE

)

End(Not run)

rxp_r Create a Nix expression running an R function

Description

Create a Nix expression running an R function

Usage

rxp_r(
name,
expr,
additional_files = "",
user_functions = "",

rxp_r 31

nix_env = "default.nix",
encoder = NULL,
decoder = NULL,
env_var = NULL,
noop_build = FALSE

)

Arguments

name Symbol, name of the derivation.

expr R code to generate the expression. Ideally it should be a call to a pure function,
or a piped expression. Multi-line expressions are not supported.

additional_files

Character vector, additional files to include during the build process. For exam-
ple, if a function expects a certain file to be available, this is where you should
include it.

user_functions Character vector, user-defined functions to include. This should be a script (or
scripts) containing user-defined functions to include during the build process
for this derivation. It is recommended to use one script per function, and only
include the required script(s) in the derivation.

nix_env Character, path to the Nix environment file, default is "default.nix".

encoder Function or character defaults to NULL. A function used to encode (serialize)
objects for transfer between derivations. It must accept two arguments: the ob-
ject to encode (first), and the target file path (second). If your function has a dif-
ferent signature, wrap it to match this interface. By default, saveRDS() is used,
but this may yield unexpected results, especially for complex objects like ma-
chine learning models. For instance, for {keras} models, use keras::save_model_hdf5()
to capture the full model (architecture, weights, training config, optimiser state,
etc.). See vignette("encoding-decoding") for more details.

decoder Function, character, or named vector/list, defaults to NULL. Can be:

• A single function/string to decode (unserialize) all upstream objects (e.g.,
readRDS)

• A named vector/list where names are upstream dependency names and val-
ues are their specific decoding functions (e.g., c(mtcars_tail = "qs::qread",
mtcars_head = "read.csv")) By default, readRDS() is used. See vignette("encoding-decoding")
for more details.

env_var Character vector, defaults to NULL. A named vector of environment variables to
set before running the R script, e.g., c("CMDSTAN" = "${defaultPkgs.cmdstan}/opt/cmdstan)".
Each entry will be added as an export statement in the build phase.

noop_build Logical, defaults to FALSE. If TRUE, the derivation produces a no-op build (a
stub output with no actual build steps). Any downstream derivations depending
on a no-op build will themselves also become no-op builds.

Details

At a basic level, rxp_r(mtcars_am, filter(mtcars, am == 1)) is equivalent to mtcars_am <-
filter(mtcars, am == 1). rxp_r() generates the required Nix boilerplate to output a so-called

32 rxp_r2py

"derivation" in Nix jargon. A Nix derivation is a recipe that defines how to create an output (in this
case mtcars_am) including its dependencies, build steps, and output paths.

Value

An object of class derivation which inherits from lists.

See Also

Other derivations: rxp_jl(), rxp_jl_file(), rxp_py(), rxp_py_file(), rxp_qmd(), rxp_r_file(),
rxp_rmd()

Examples

Not run:
Basic usage
rxp_r(name = filtered_mtcars, expr = filter(mtcars, am == 1))

Skip building this derivation
rxp_r(
name = turtles,
expr = occurrence(species, geometry = atlantic),
noop_build = TRUE

)

Serialize object using qs
rxp_r(
name = filtered_mtcars,
expr = filter(mtcars, am == 1),
encoder = qs::qsave
)
Unerialize using qs::qread in the next derivation
rxp_r(
name = mtcars_mpg,
expr = select(filtered_mtcars, mpg),
decoder = qs::qread
)

End(Not run)

rxp_r2py Transfer R object into a Python session.

Description

Transfer R object into a Python session.

Usage

rxp_r2py(name, expr, nix_env = "default.nix")

rxp_read 33

Arguments

name Symbol, name of the derivation.

expr Symbol, R object to be saved into a Python pickle.

nix_env Character, path to the Nix environment file, default is "default.nix".

Details

rxp_r2py(my_obj, my_r_object) saves an R object to a Python pickle using reticulate::py_save_object().

Value

An object of class rxp_derivation.

See Also

Other interop functions: rxp_py2r()

rxp_read Read output of a derivation

Description

Reads the output of derivations in the current session, returns a path if reading directly is not possi-
ble.

Usage

rxp_read(derivation_name, which_log = NULL, project_path = ".")

Arguments

derivation_name

Character, the name of the derivation.

which_log Character, defaults to NULL. If NULL the most recent build log is used. If a
string is provided, it’s used as a regular expression to match against available
log files.

project_path Character, defaults to ".". Path to the root directory of the project.

Details

When derivation_name points to a single R object, it gets read in the current session using
readRDS(). If it’s a Python object and {reticulate} is available, reticulate::py_load_object()
is used. In case the derivation is pointing to several outputs (which can happen when building a
Quarto document for example) or neither readRDS() nor reticulate::py_load_object() suc-
cessfully read the object, the path to the object is returned instead.

34 rxp_rmd

Value

The derivation’s output.

See Also

Other utilities: print.rxp_derivation(), rxp_copy(), rxp_gc(), rxp_init(), rxp_inspect(),
rxp_list_logs(), rxp_load(), rxp_trace()

Examples

Not run:
mtcars <- rxp_read("mtcars")

Read from a specific build log
mtcars <- rxp_read("mtcars", which_log = "2025-05-10")

End(Not run)

rxp_rmd Render an R Markdown document as a Nix derivation

Description

Render an R Markdown document as a Nix derivation

Usage

rxp_rmd(
name,
rmd_file,
additional_files = "",
nix_env = "default.nix",
params = NULL,
env_var = NULL,
noop_build = FALSE

)

Arguments

name Symbol, derivation name.

rmd_file Character, path to .Rmd file.
additional_files

Character vector, additional files to include, for example a folder containing the
pictures to include in the R Markdown document.

nix_env Character, path to the Nix environment file, default is "default.nix".

params List, parameters to pass to the R Markdown document. Default is NULL.

rxp_r_file 35

env_var List, defaults to NULL. A named list of environment variables to set before run-
ning the R Markdown render command, e.g., c(RSTUDIO_PANDOC = "/path/to/pandoc").
Each entry will be added as an export statement in the build phase.

noop_build Logical, defaults to FALSE. If TRUE, the derivation produces a no-op build (a
stub output with no actual build steps). Any downstream derivations depending
on a no-op build will themselves also become no-op builds.

Details

To include objects built in the pipeline, rxp_read("derivation_name") should be put in the .Rmd
file.

Value

An object of class derivation which inherits from lists.

See Also

Other derivations: rxp_jl(), rxp_jl_file(), rxp_py(), rxp_py_file(), rxp_qmd(), rxp_r(),
rxp_r_file()

Examples

Not run:
Compile a .Rmd file to a pdf
`images` is a folder containing images to include in the R Markdown doc
rxp_rmd(

name = report,
rmd_file = "report.Rmd",
additional_files = "images"

)

Skip building this derivation
rxp_rmd(

name = draft_report,
rmd_file = "draft.Rmd",
noop_build = TRUE

)

End(Not run)

rxp_r_file Creates a Nix expression that reads in a file (or folder of data) using
R.

Description

Creates a Nix expression that reads in a file (or folder of data) using R.

36 rxp_r_file

Usage

rxp_r_file(...)

Arguments

... Arguments passed on to rxp_file

name Symbol, the name of the derivation.
path Character, the file path to include (e.g., "data/mtcars.shp") or a folder path

(e.g., "data"). See details.
read_function Function, an R function to read the data, taking one argument

(the path). This can be a user-defined function that is made available using
user_functions. See details.

user_functions Character vector, user-defined functions to include. This should
be a script (or scripts) containing user-defined functions to include during
the build process for this derivation. It is recommended to use one script
per function, and only include the required script(s) in the derivation.

nix_env Character, path to the Nix environment file, default is "default.nix".
env_var List, defaults to NULL. A named list of environment variables to set

before running the R script, e.g., c(VAR = "hello"). Each entry will be
added as an export statement in the build phase.

encoder Function/character, defaults to NULL. A language-specific serializer
to write the loaded object to disk.

• R: function/symbol/character (e.g., qs::qsave) taking (object, path).
Defaults to saveRDS.

• Python: character name of a function taking (object, path). Defaults
to using pickle.dump.

• Julia: character name of a function taking (object, path). Defaults
to using Serialization.serialize.

Details

The basic usage is to provide a path to a file, and the function to read it. For example: rxp_r_file(mtcars,
path = "data/mtcars.csv", read_function = read.csv). It is also possible instead to point to a
folder that contains many files that should all be read at once, for example: rxp_r_file(many_csvs, path = "data", read_function = \(x)(readr::read_csv(list.files(x, full.names = TRUE, pattern = ".csv$")))).
See the vignette("importing-data") vignette for more detailed examples.

Value

An object of class rxp_derivation.

See Also

Other derivations: rxp_jl(), rxp_jl_file(), rxp_py(), rxp_py_file(), rxp_qmd(), rxp_r(),
rxp_rmd()

rxp_trace 37

rxp_trace Trace lineage of derivations

Description

Trace lineage of derivations

Usage

rxp_trace(
name = NULL,
dag_file = file.path("_rixpress", "dag.json"),
transitive = TRUE,
include_self = FALSE

)

Arguments

name Character, defaults to NULL. Name of the derivation to inspect. If NULL, the
function prints the whole pipeline (inverted global view).

dag_file Character, defaults to "_rixpress/dag.json". Path to dag.json.

transitive Logical, defaults to TRUE. If TRUE, show transitive closure and mark transitive-
only nodes with "*". If FALSE, show immediate neighbours only.

include_self Logical, defaults to FALSE. If TRUE, include name itself in the results.

Value

Invisibly, a named list mapping each inspected derivation name to a list with elements: - dependen-
cies - reverse_dependencies The function also prints a tree representation to the console.

See Also

Other utilities: print.rxp_derivation(), rxp_copy(), rxp_gc(), rxp_init(), rxp_inspect(),
rxp_list_logs(), rxp_load(), rxp_read()

rxp_visnetwork Create a Directed Acyclic Graph (DAG) representing the pipeline us-
ing {visNetwork}

Description

Uses {visNetwork} to generate the plot. {visNetwork} is a soft dependency of {rixpress} so
you need to install it to use this function. When derivations are organized into pipelines using
rxp_pipeline(), nodes are colored according to their pipeline colors and grouped by pipeline
name in the legend.

38 rxp_write_dag

Usage

rxp_visnetwork(
nodes_and_edges = get_nodes_edges(),
color_by = c("pipeline", "type"),
colour_by = NULL

)

Arguments

nodes_and_edges

List, output of get_nodes_edges().

color_by Character, either "pipeline" (default) or "type". When "pipeline", nodes are col-
ored by their pipeline group (if defined). When "type", nodes are colored by
their derivation type (rxp_r, rxp_py, etc.).

colour_by Character, alias for color_by.

Value

Nothing, this function opens a new tab in your browser with the DAG generated using {visNetwork}.

See Also

Other visualisation functions: rxp_ggdag()

Examples

Not run:
rxp_visnetwork()
rxp_visnetwork(color_by = "type") # Color by derivation type instead

End(Not run)

rxp_write_dag Generate a DAG from a list of derivations

Description

Creates a JSON representation of a directed acyclic graph (DAG) based on dependencies between
derivations. Is automatically called by rxp_populate().

Usage

rxp_write_dag(rxp_list, output_file = "_rixpress/dag.json")

Arguments

rxp_list A list of derivations.

output_file Path to the output JSON file. Defaults to "_rixpress/dag.json".

rxp_write_dag 39

Value

Nothing, writes a JSON file representing the DAG.

See Also

Other ci utilities: rxp_dag_for_ci(), rxp_ga()

Examples

Not run:
rxp_write_dag(rxp_list)

End(Not run)

Index

∗ archive caching functions
rxp_export_artifacts, 8
rxp_import_artifacts, 13

∗ ci utilities
rxp_dag_for_ci, 7
rxp_ga, 9
rxp_write_dag, 38

∗ derivations
rxp_jl, 16
rxp_jl_file, 18
rxp_py, 25
rxp_py_file, 28
rxp_qmd, 29
rxp_r, 30
rxp_r_file, 35
rxp_rmd, 34

∗ interop functions
rxp_py2r, 27
rxp_r2py, 32

∗ pipeline functions
rxp_make, 21
rxp_pipeline, 22
rxp_populate, 23

∗ python import
add_import, 3
adjust_import, 4

∗ utilities
print.rxp_derivation, 5
rxp_copy, 6
rxp_gc, 10
rxp_init, 14
rxp_inspect, 15
rxp_list_logs, 19
rxp_load, 20
rxp_read, 33
rxp_trace, 37

∗ visualisation functions
rxp_ggdag, 12
rxp_visnetwork, 37

add_import, 3, 4
adjust_import, 3, 4

print.rxp_derivation, 5, 6, 11, 14, 15, 19,
20, 34, 37

print.rxp_pipeline, 5

rxp_copy, 5, 6, 11, 14, 15, 19, 20, 34, 37
rxp_dag_for_ci, 7, 9, 39
rxp_export_artifacts, 8, 13
rxp_file, 18, 28, 36
rxp_ga, 7, 9, 39
rxp_gc, 5, 6, 10, 14, 15, 19, 20, 34, 37
rxp_ggdag, 12, 38
rxp_import_artifacts, 8, 13
rxp_init, 5, 6, 11, 14, 15, 19, 20, 34, 37
rxp_inspect, 5, 6, 11, 14, 15, 19, 20, 34, 37
rxp_jl, 16, 19, 26, 29, 30, 32, 35, 36
rxp_jl_file, 17, 18, 26, 29, 30, 32, 35, 36
rxp_list_logs, 5, 6, 11, 14, 15, 19, 20, 34, 37
rxp_load, 5, 6, 11, 14, 15, 19, 20, 34, 37
rxp_make, 21, 22, 24
rxp_pipeline, 21, 22, 24
rxp_populate, 21, 22, 23
rxp_py, 17, 19, 25, 29, 30, 32, 35, 36
rxp_py2r, 27, 33
rxp_py_file, 17, 19, 26, 28, 30, 32, 35, 36
rxp_qmd, 17, 19, 26, 29, 29, 32, 35, 36
rxp_r, 17, 19, 26, 29, 30, 30, 35, 36
rxp_r2py, 27, 32
rxp_r_file, 17, 19, 26, 29, 30, 32, 35, 35
rxp_read, 5, 6, 11, 14, 15, 19, 20, 33, 37
rxp_rmd, 17, 19, 26, 29, 30, 32, 34, 36
rxp_trace, 5, 6, 11, 14, 15, 19, 20, 34, 37
rxp_visnetwork, 13, 37
rxp_write_dag, 7, 9, 38

40

	add_import
	adjust_import
	print.rxp_derivation
	print.rxp_pipeline
	rxp_copy
	rxp_dag_for_ci
	rxp_export_artifacts
	rxp_ga
	rxp_gc
	rxp_ggdag
	rxp_import_artifacts
	rxp_init
	rxp_inspect
	rxp_jl
	rxp_jl_file
	rxp_list_logs
	rxp_load
	rxp_make
	rxp_pipeline
	rxp_populate
	rxp_py
	rxp_py2r
	rxp_py_file
	rxp_qmd
	rxp_r
	rxp_r2py
	rxp_read
	rxp_rmd
	rxp_r_file
	rxp_trace
	rxp_visnetwork
	rxp_write_dag
	Index

