Package ‘localLLM’

February 17, 2026
Type Package
Title Running Local LLMs with 'llama.cpp’ Backend
Version 1.2.0
Date 2026-02-16

Author Eddie Yang [aut] (ORCID: <https://orcid.org/0000-0002-3696-3226>),
Yaosheng Xu [aut, cre] (ORCID: <https://orcid.org/0009-0006-8138-369X>)

Maintainer Yaosheng Xu <xu2009@purdue.edu>

Description Provides R bindings to the 'llama.cpp' library for running large language models.
The package uses a lightweight architecture where the C++ backend library is downloaded
at runtime rather than bundled with the package.

Package features include text generation, reproducible generation, and parallel inference.

License MIT + file LICENSE
Depends R (>= 3.6.0)
LinkingTo Rcpp

Imports Rcpp (>= 1.0.14), tools, utils, jsonlite, digest, curl,
R.utils

Suggests testthat (>= 3.0.0), covr, irr, knitr, rmarkdown
VignetteBuilder knitr

URL https://github.com/EddieYang211/locallLLM

BugReports https://github.com/EddieYang211/locallLLM/issues
SystemRequirements C++17, libcurl (optional, for model downloading)
Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

NeedsCompilation yes

Repository CRAN

Date/Publication 2026-02-17 21:50:02 UTC

https://orcid.org/0000-0002-3696-3226
https://orcid.org/0009-0006-8138-369X
https://github.com/EddieYang211/localLLM
https://github.com/EddieYang211/localLLM/issues

2 localLLM-package

Contents
localLLM-package i i e e e 2
ag_news_sample e e 5
annotation_SinkK_CSV e e 5
apply_chat_template 6
apply_gemma_chat_template L 7
backend_free e 8
backend_init. e 8
compute_confusion_matrices 8
CONEEXL_CIEALE v v v o e e e e e e e e e e e e e e e 9
detokenize e 11
document_end e 12
document_start e e e e e e e e e e 12
download_model e 13
exploreo e 14
GENETALE Lt . e e e e e e e e e e e 16
generate_parallel 17
get_lib_path e 19
get_model_cache_dir L 19
hardware_profile 20
install_localLLM e e e e 20
intercoder_reliability 21
lib_is_installed e 22
list_cached_models 22
list_ollama_models e 23
model_load e 23
quick_Ilama oL e 25
quick_Ilama_reset 28
set_hf token e e e 28
smart_chat_template 29
tOKENIZE o e e e e e e e e e e e e e 29
tOKEeNIZE_teSt e e e e e e e e e e e e e e e e e 30
validate L e 31

Index 33

locallLLM-package R Interface to llama.cpp with Runtime Library Loading
Description

Provides R bindings to the llama.cpp library for running large language models locally. This pack-
age uses an innovative lightweight architecture where the C++ backend library is downloaded at
runtime rather than bundled with the package, enabling zero-configuration Al inference in R with
enterprise-grade performance.

localLLM-package 3

Details

The localLLM package brings state-of-the-art language models to R users through a carefully de-
signed four-layer architecture that combines ease of use with high performance.

Quick Start 1. Install the R package: install.packages(”localLLM") 2. Download backend
library: install_locallLLM() 3. Start generating text: quick_llama("Hello, how are you?")

Key Features

* Zero Configuration: One-line setup with automatic model downloading

* High Performance: Native C++ inference engine with GPU support

Cross Platform: Pre-compiled binaries for Windows, macOS, and Linux
* Memory Efficient: Smart caching and memory management

* Production Ready: Robust error handling and comprehensive documentation
Architecture Overview The package uses a layered design:

* High-Level API: quick_1lama for simple text generation
¢ Mid-Level API: model_load, generate for detailed control
» Low-Level API: Direct access to tokenization and context management

* C++ Backend: llama.cpp engine with dynamic loading
Main Functions

e install_locallLLM - Download and install backend library

* quick_l1lama - High-level text generation (recommended for beginners)
* model_load - Load GGUF models with smart caching

* context_create - Create inference contexts

* generate - Generate text with full parameter control

* tokenize / detokenize - Text <-> Token conversion

e apply_chat_template - Format conversations for chat models

Example Workflows
Basic Text Generation

Simple one-liner
response <- quick_llama("Explain quantum computing")

With custom parameters

creative_text <- quick_llama("Write a poem about AI",
temperature = 0.9,
max_tokens = 150)

Advanced Usage with Custom Models

4 localLLM-package

Load your own model
model <- model_load("path/to/your/model.gguf")
ctx <- context_create(model, n_ctx = 4096)

Direct text generation with auto-tokenization
output <- generate(ctx, "The future of AI is"”, max_tokens = 100)

#i## Batch Processing

Process multiple prompts efficiently
prompts <- c(”Summarize AI trends”, "Explain machine learning”, "What is deep learning?")
responses <- quick_llama(prompts)

Supported Model Formats The package works with GGUF format models from various sources:

* Hugging Face Hub (automatic download)
* Local .gguf files
* Custom quantized models

* Ollama-compatible models
Performance Tips

* Use n_gpu_layers = -1 to fully utilize GPU acceleration
* Set n_threads to match your CPU cores for optimal performance
» Use larger n_ctx values for longer conversations

* Enable use_mlock for frequently used models to prevent swapping

Author(s)

Eddie Yang and Yaosheng Xu <xu2009 @purdue.edu>

References

https://github.com/EddieYang211/locallLM

See Also

Useful links:

e https://github.com/EddieYang211/locallLlLM
* Report bugs at https://github.com/EddieYang211/1locallLLM/issues

https://github.com/EddieYang211/localLLM
https://github.com/EddieYang211/localLLM
https://github.com/EddieYang211/localLLM/issues

ag_news_sample 5

ag_news_sample AG News classification sample

Description

A 100-row subset of the AG News Topic Classification dataset consisting of 25 documents from
each of the four classes (World, Sports, Business, Sci/Tech). The sample is intended for quick
demonstrations and tests without requiring the full external dataset.

Usage

data(ag_news_sample)

Format

A data frame with 100 rows and 3 character columns:

class News topic label ("World”, "Sports”, "Business”, or "Sci/Tech").
title Headline of the news article.

description Short description for the article.

Details
The sample was obtained from textdata: :dataset_ag_news() (Zhang et al., 2015) using a fixed
random seed to ensure reproducibility. It is provided solely for illustrative purposes.
Source
Zhang, X., Zhao, J., & LeCun, Y. (2015). "Character-level Convolutional Networks for Text Classi-
fication." arXiv:1509.01626. Original data distributed via the AG News Topic Classification dataset.
See Also

[textdata::dataset_ag_news()]

annotation_sink_csv Create a CSV sink for streaming annotation chunks
Description
The returned closure can be passed to ‘explore(sink = ...)* to append each per-model chunk to a

CSV file without holding everything in memory.

Usage

annotation_sink_csv(path, append = FALSE)

6 apply_chat_template

Arguments

path Destination CSV path.

append If “TRUE, new chunks are appended to an existing file.
Value

A function with signature ‘(chunk, model_id)‘.

apply_chat_template Apply Chat Template to Format Conversations

Description

Formats conversation messages using the model’s built-in chat template or a custom template. This
is essential for chat models that expect specific formatting for multi-turn conversations.

Usage
apply_chat_template(model, messages, template = NULL, add_assistant = TRUE)

Arguments
model A model object created with model_load
messages List of chat messages, each with ’role’ and ’content’ fields. Role should be
‘user’, ’assistant’, or ’system’
template Optional custom template string (default: NULL, uses model’s built-in tem-

plate)
add_assistant Whether to add assistant prompt suffix for response generation (default: TRUE)

Value

Formatted prompt string ready for text generation

See Also

model_load, quick_llama, generate

Examples

Not run:
Load a chat model
model <- model_load("path/to/chat_model.gguf")

Format a conversation

messages <- list(
list(role = "system”, content = "You are a helpful assistant.”),
list(role = "user”, content = "What is machine learning?"),

apply_gemma_chat_template 7

list(role = "assistant”, content = "Machine learning is..."),
list(role = "user"”, content = "Give me an example.”
’

)

Apply chat template
formatted_prompt <- apply_chat_template(model, messages)

Generate response
response <- quick_llama(formatted_prompt)

End(Not run)

apply_gemma_chat_template
Apply Gemma-Compatible Chat Template

Description

Creates a properly formatted chat template for Gemma models, which use <start_of_turn> and
<end_of_turn> markers instead of ChatML format. This function addresses compatibility issues
with apply_chat_template() when used with Gemma models.

Usage

apply_gemma_chat_template(messages, add_assistant = TRUE)

Arguments

messages A list of message objects, each with ’role’ and ’content’ fields

add_assistant Whether to add the assistant turn prefix (default: TRUE)

Value

A character string with properly formatted Gemma chat template

Examples
Not run:
messages <- list(
list(role = "system”, content = "You are a helpful assistant.”),
list(role = "user”, content = "Hello!")
)

formatted <- apply_gemma_chat_template(messages)

End(Not run)

8 compute_confusion_matrices

backend_free Free localLLM backend

Description

Clean up backend resources. Usually called automatically.

Usage

backend_free()

Value

No return value, called for side effects (frees backend resources).

backend_init Initialize localLLM backend

Description

Initialize the backend library. This should be called once before using other functions.

Usage

backend_init()

Value

No return value, called for side effects (initializes backend).

compute_confusion_matrices
Compute confusion matrices from multi-model annotations

Description

Compute confusion matrices from multi-model annotations

context_create 9

Usage

compute_confusion_matrices(
annotations,
gold = NULL,
pairwise = TRUE,
label_levels = NULL,
sample_col = "sample_id",
model_col = "model_id",
label_col = "label”,
truth_col = "truth”

)
Arguments
annotations Output from [explore()] or a compatible data frame with at least ‘sample_id‘,
‘model_id*, and ‘label‘ columns.
gold Optional vector of gold labels. Overrides the ‘truth‘ column when supplied.
pairwise When ‘TRUE', cross-model confusion tables are returned even if no gold labels

exist.

label_levels Optional factor levels to enforce a consistent ordering in the resulting tables.
sample_col, model_col, label_col, truth_col
Column names to use when ‘annotations‘ is a custom data frame.

Value

A list with elements ‘vs_gold‘ (named list of matrices, one per model) and ‘pairwise* (list of pair-
wise confusion tables).

context_create Create Inference Context for Text Generation

Description

Creates a context object that manages the computational state for text generation. The context
maintains the conversation history and manages memory efficiently for processing input tokens and
generating responses. Each model can have multiple contexts with different settings.

Usage

context_create(
model,
n_ctx = 2048L,
n_threads = 4L,
n_seqg_max = 1L,
verbosity = 1L

10

Arguments

model

n_ctx

n_threads

n_seq_max

verbosity

Value

context_create

A model object returned by model_load

Maximum context length in tokens (default: 2048). This determines how many
tokens of conversation history can be maintained. Larger values require more
memory but allow for longer conversations. Must not exceed the model’s maxi-
mum context length

Number of CPU threads for inference (default: 4). Set to the number of available
CPU cores for optimal performance. Only affects CPU computation

Maximum number of parallel sequences (default: 1). Used for batch processing
multiple conversations simultaneously. Higher values require more memory

Control backend logging during context creation (default: 1L). Larger values
print more information: @ emits only errors, 1 includes warnings, 2 adds infor-
mational logs, and 3 enables the most verbose debug output.

A context object (external pointer) used for text generation with generate

See Also

model_load, generate, tokenize

Examples

Not run:

Load model and create basic context
model <- model_load("path/to/model.gguf")
ctx <- context_create(model)

Create context with larger buffer for long conversations
long_ctx <- context_create(model, n_ctx = 4096)

High-performance context with more threads
fast_ctx <- context_create(model, n_ctx = 2048, n_threads = 8)

Context for batch processing multiple conversations
batch_ctx <- context_create(model, n_ctx = 2048, n_seq_max = 4)

Create context with minimal verbosity (quiet mode)
quiet_ctx <- context_create(model, verbosity = 2L)

End(Not run)

detokenize 11

detokenize Convert Token IDs Back to Text

Description

Converts a sequence of integer token IDs back into human-readable text. This is the inverse op-
eration of tokenization and is typically used to convert model output tokens into text that can be
displayed to users.

Usage

detokenize(model, tokens)

Arguments
model A model object created with model_load. Must be the same model that was
used for tokenization to ensure proper decoding
tokens Integer vector of token IDs to convert back to text. These are typically generated
by tokenize or generate
Value

Character string containing the decoded text corresponding to the input tokens

See Also

tokenize, generate, model_load

Examples

Not run:
Load model
model <- model_load("path/to/model.gguf")

Tokenize then detokenize (round-trip)
original_text <- "Hello, how are you today?"

tokens <- tokenize(model, original_text)
recovered_text <- detokenize(model, tokens)
print(recovered_text) # Should match original_text

Generate and display text
ctx <- context_create(model)
generated_text <- generate(ctx, "The weather is”, max_tokens = 10)

Inspect individual tokens

single_token <- c(123) # Some token ID

token_text <- detokenize(model, single_token)
print(paste(”"Token”, single_token, "represents:", token_text))

End(Not run)

12 document_start

document_end Finish automatic run documentation

Description

Flushes the buffered log entries assembled since the matching [document_start()] call and writes
them to the configured text file. A SHA-256 hash of the written content is appended to the log so
runs can be compared or referenced succinctly.

Usage

document_end()

Value

Invisibly returns the log file path with attribute ‘hash‘ containing the SHA-256 digest of the run
contents.

document_start Start automatic run documentation

Description

Calling ‘document_start()‘ enables automatic logging for subsequent ‘localLLM* calls. Information
such as timestamps, models, and generation settings are buffered in-memory until [document_end()]
is invoked, at which point a human-readable text report is written to disk.

Usage
document_start(path = NULL, metadata = list(), append = FALSE)

Arguments
path Optional destination path for the log file. Defaults to ‘localLLM_run_<timestamp>.txt*
in the current working directory.
metadata Optional named list of user-defined metadata to include in the log header (e.g.
project name, dataset id).
append When ‘TRUE', entries are appended to an existing file instead of overwriting it.
Value

The path that will be written when [document_end()] is called.

download_model 13

download_model Download a model manually

Description

Download a model manually

Usage

download_model(
model_url,
output_path = NULL,
show_progress = TRUE,
verify_integrity = TRUE,
max_retries = 3,
hf_token = NULL

)

Arguments
model_url URL of the model to download (currently only supports https://)
output_path Local path where to save the model (optional, will use cache if not provided)

show_progress Whether to show download progress (default: TRUE)
verify_integrity

Verify file integrity after download (default: TRUE)
max_retries Maximum number of download retries (default: 3)

hf_token Optional Hugging Face access token to use for this download. Defaults to the
existing ‘HF_TOKEN" environment variable.

Value

The path where the model was saved

Examples

Not run:

Download to specific location

download_model (
"https://example.com/model.gguf”,
file.path(tempdir(), "my_model.gguf")

)

Download to cache (path will be returned)
cached_path <- download_model("https://example.com/model.gguf")

End(Not run)

14

explore

explore

Compare multiple LLMs over a shared set of prompts

Description

‘explore()¢ orchestrates running several models over the same prompts, captures their predictions,
and returns both long and wide annotation tables that can be fed into confusion-matrix and reliability

helpers.

Usage

explore(
models,
instruction =

NULL,

prompts = NULL,
engine = c("auto”, "parallel”, "single"),
batch_size = 8L,

reuse_models

= FALSE,

progress = interactive(),

sink = NULL,
clean = TRUE,
keep_prompts
hash = TRUE,

chat_template
system_prompt

Arguments

models

= FALSE,

TRUE,
NULL

Model definitions. Accepts one of the following formats:
* A single model path string (consistent with [model_load()] syntax)
* A named character vector where names become ‘model_id‘s
* A list of model specification lists

Each model specification list supports the following keys:

id (Required unless auto-generated) Unique identifier for this model

model_path (Required unless using ‘predictor*) Path to local GGUF file, URL,
or cached model name. Supports the same formats as [model_load()]

n_gpu_layers Number of layers to offload to GPU. Use “"auto"* (default) for
automatic detection, ‘0‘ for CPU-only, or ‘-1° for all layers on GPU

n_ctx Context window size (default: 2048)

n_threads Number of CPU threads (default: auto-detected)

cache_dir Custom cache directory for model downloads

use_mmap Enable memory mapping (default: TRUE)

use_mlock Lock model in memory (default: FALSE)

check_memory Check memory availability before loading (default: TRUE)

explore

instruction

prompts

engine

batch_size

reuse_models

sink

progress
clean

keep_prompts

hash

chat_template

system_prompt

15

force_redownload Force re-download even if cached (default: FALSE)

verify_integrity Verify file integrity (default: TRUE)

hf token Hugging Face access token for gated models. Can also be set globally
via [set_hf_token()]

verbosity Backend logging level (default: 1)

chat_template Override the global ‘chat_template® setting for this model

system_prompt Override the global ‘system_prompt* for this model

instruction Task instruction to use for this model

generation List of generation parameters (max_tokens, temperature, etc.)

prompts Custom prompts for this model

predictor Function for mock/testing scenarios (bypasses model loading)

Default task instruction inserted into ‘spec‘ whenever a model entry does not

override it.

One of: (1) a function (for example ‘function(spec)‘) that returns prompts (char-

acter vector or a data frame with a ‘prompt‘ column); (2) a character vector of

ready-made prompts; or (3) a template list where each named element becomes

a section in the rendered prompt. Field names are used as-is for headers. Vector

fields matching ‘sample_id‘ length are treated as per-item values. Use ‘sam-

ple_id* to specify item IDs (meta, not rendered). When ‘NULL°, each model

must provide its own ‘prompts‘ entry.

ne en

One of “"auto"*, “"parallel"*, or ‘"single
or ‘generate()* is used under the hood.

ne

. Controls whether ‘generate_parallel()*

Number of prompts to send per backend call when the parallel engine is active.
Must be >= 1.

If ‘TRUE®, model/context handles stay alive for the duration of the function
(useful when exploring lots of prompts). When ‘FALSE‘ (default) handles are
released after each model to minimise peak memory usage.

Optional function that accepts ‘(chunk, model_id)‘ and is invoked after each
model finishes. This makes it easy to stream intermediate results to disk via
helpers such as [annotation_sink_csv()].

Whether to print progress messages for each model/batch.

Forwarded to ‘generate()‘/‘generate_parallel()‘ to remove control tokens from
the outputs.

If “TRUE", the generated prompts are preserved in the long-format output (use-
ful for audits). Defaults to ‘FALSE".

When ‘TRUE® (default), computes SHA-256 hashes for each model’s prompts
and resulting labels so replication collaborators can verify inputs and outputs.
Hashes are attached to the returned list via the ‘"hashes"* attribute.

When ‘TRUE®, wraps prompts using the model’s built-in chat template before
generation. This uses [apply_chat_template()] to format prompts with appropri-
ate special tokens for instruction-tuned models. Individual models can override
this via their spec. Default: ‘TRUE".

Optional system message to include when ‘chat_template = TRUE‘. This is
prepended as a system role message before the user prompt. Individual models
can override this via their spec. Default: ‘NULL".

16

Value

generate

A list with elements ‘annotations‘ (long table) and ‘matrix‘ (wide annotation matrix). When ‘sink* is
supplied the ‘annotations‘ and ‘matrix‘ entries are set to ‘NULL* to avoid duplicating the streamed

output.

generate

Generate Text Using Language Model Context

Description

Generates text using a loaded language model context with automatic tokenization. Simply provide
a text prompt and the model will handle tokenization internally. This function now has a unified
API with generate_parallel.

Usage

generate(
context,
prompt,

max_tokens = 100L,

top_k = 4oL,

top_p =1,
temperature

repeat_last_n

0,
= oL,

penalty_repeat = 1,

seed = 1234L,

clean = FALSE,

hash = TRUE

Arguments

context
prompt

max_tokens

top_k

top_p

temperature

repeat_last_n

A context object created with context_create
Character string containing the input text prompt

Maximum number of tokens to generate (default: 100). Higher values produce
longer responses

Top-k sampling parameter (default: 40). Limits vocabulary to k most likely
tokens. Use 0 to disable

Top-p (nucleus) sampling parameter (default: 1.0). Cumulative probability thresh-
old for token selection

Sampling temperature (default: 0.0). Set to O for greedy decoding. Higher
values increase creativity

Number of recent tokens to consider for repetition penalty (default: 0). Set to 0
to disable

generate_parallel 17

penalty_repeat Repetition penalty strength (default: 1.0). Values >1 discourage repetition. Set
to 1.0 to disable

seed Random seed for reproducible generation (default: 1234). Use positive integers
for deterministic output

clean If TRUE, strip common chat-template control tokens from the generated text
(default: FALSE).

hash When ‘TRUE® (default), computes SHA-256 hashes for the provided prompt

and the resulting output. Hashes are attached via the ‘"hashes"‘ attribute for
later inspection.
Value

Character string containing the generated text

See Also

quick_llama, generate_parallel, context_create

Examples

Not run:

Load model and create context

model <- model_load("path/to/model.gguf")
ctx <- context_create(model, n_ctx = 2048)

response <- generate(ctx, "Hello, how are you?"”, max_tokens = 50)

Creative writing with higher temperature
story <- generate(ctx, "Once upon a time", max_tokens = 200, temperature = 0.8)

Prevent repetition

no_repeat <- generate(ctx, "Tell me about AI",
repeat_last_n = 64,
penalty_repeat = 1.1)

Clean output (remove special tokens)
clean_output <- generate(ctx, "Explain quantum physics”, clean = TRUE)

End(Not run)

generate_parallel Generate Text in Parallel for Multiple Prompts

Description

Generate Text in Parallel for Multiple Prompts

18 generate_parallel
Usage
generate_parallel(
context,
prompts,
max_tokens = 100L,
top_k = 40L,
top_p =1,
temperature = 0,
repeat_last_n = oL,
penalty_repeat = 1,
seed = 1234L,
progress = FALSE,
clean = FALSE,
hash = TRUE
)
Arguments
context A context object created with context_create
prompts Character vector of input text prompts
max_tokens Maximum number of tokens to generate (default: 100)
top_k Top-k sampling parameter (default: 40). Limits vocabulary to k most likely
tokens
top_p Top-p (nucleus) sampling parameter (default: 1.0). Cumulative probability thresh-
old for token selection
temperature Sampling temperature (default: 0.0). Set to O for greedy decoding. Higher
values increase creativity
repeat_last_n Number of recent tokens to consider for repetition penalty (default: 0). Set to 0
to disable
penalty_repeat Repetition penalty strength (default: 1.0). Values >1 discourage repetition. Set
to 1.0 to disable
seed Random seed for reproducible generation (default: 1234). Use positive integers
for deterministic output
progress If TRUE, displays a console progress bar indicating batch completion status while
generations are running (default: FALSE).
clean If TRUE, remove common chat-template control tokens from each generated
text (default: FALSE).
hash When ‘TRUE® (default), computes SHA-256 hashes for the supplied prompts
and generated outputs. Hashes are attached via the “"hashes"* attribute for later
inspection.
Value

Character vector of generated texts

get_lib_path 19

get_lib_path Get Backend Library Path

Description

Returns the full path to the installed localLLM backend library.

Usage
get_lib_path()

Details
This function will throw an error if the backend library is not installed. Use 1ib_is_installed to
check installation status first.

Value

Character string containing the path to the backend library file.

See Also

lib_is_installed, install_locallLLM

Examples

Not run:
Get the library path (only if installed)
if (lib_is_installed()) {
lib_path <- get_lib_path()
message("Library is at: ", lib_path)
3

End(Not run)

get_model_cache_dir Get the model cache directory

Description

Get the model cache directory

Usage

get_model_cache_dir ()

Value

Path to the directory where models are cached

20 install localLLM

hardware_profile Inspect detected hardware resources

Description

Returns the cached system profile recorded by localLLM when the package was attached. The
probe captures approximate CPU, RAM, and GPU capacity so that safety warnings can estimate
whether a model fits the device.

Usage

hardware_profile(refresh = FALSE)

Arguments

refresh When TRUE, forces a fresh probe instead of returning the cached profile.

Value

A list describing the operating system, CPU cores, total RAM (bytes), GPU information and detec-
tion timestamp.

Examples

if (interactive()) {
hardware_profile()

}

install_locallLM Install localLLM Backend Library

Description
This function downloads and installs the pre-compiled C++ backend library required for the local-
LLM package to function.

Usage

install_locallLLM()

Details

This function downloads platform-specific pre-compiled binaries from GitHub releases. The back-
end library is stored in the user’s data directory and loaded at runtime. Internet connection is
required for the initial download.

intercoder_reliability 21

Value

Returns NULL invisibly. Called for side effects.

See Also

lib_is_installed, get_lib_path

Examples

Not run:
Install the backend library
install_locallLLM()

End(Not run)

intercoder_reliability
Intercoder reliability for LLM annotations

Description

Intercoder reliability for LLM annotations

Usage

intercoder_reliability(
annotations,
method = c("auto”, "cohen”, "krippendorff"),
label_levels = NULL,

sample_col = "sample_id",
model_col = "model_id",
label_col = "label”

)

Arguments
annotations Output from [explore()] or a compatible data frame with at least ‘sample_id‘,
‘model_id*, and ‘label‘ columns.
method One of “"auto"‘, *"cohen"‘, or ‘"krippendorff"‘. The ‘"auto"‘ setting computes

both pairwise Cohen’s Kappa and Krippendorff’s Alpha (when applicable).

label_levels Optional factor levels to enforce a consistent ordering in the resulting tables.

sample_col Column name that identifies samples when ‘annotations* is a user-provided data
frame.

model_col Column name for the model identifier when using a custom ‘annotations‘ data
frame.

label_col Column name containing model predictions when using a custom ‘annotations*

data frame.

22 list_cached _models

Value

A list containing ‘cohen‘ (data frame of pairwise kappas) and/or ‘krippendorff (overall alpha statis-
tic with per-item agreement scores).

lib_is_installed Check if Backend Library is Installed

Description

Checks whether the localLLM backend library has been downloaded and installed.

Usage
lib_is_installed()

Value

Logical value indicating whether the backend library is installed.

See Also

install_locallLM, get_lib_path

Examples

Check if backend library is installed
if (lib_is_installed()) {
message("Backend library is ready")

} else {
message("Please run install_locallLM() first")
3
list_cached_models List cached models on disk
Description

Enumerates the models that have been downloaded to the local cache. This is useful when you
want to reuse a previously downloaded model but no longer remember the original URL. The cache
directory can be overridden with the ‘LOCALLLM_CACHE_DIR‘ environment variable or via the
‘cache_dir‘ argument.

Usage

list_cached_models(cache_dir = NULL)

list_ollama_models

23
Arguments
cache_dir Optional cache directory to inspect. Defaults to the package cache used by
‘model_load()‘.
Value

A data frame with one row per cached model and the columns ‘name* (file name), ‘path‘ (absolute
path), ‘size_bytes‘, and ‘modified‘. Returns an empty data frame when no models are cached.

list_ollama_models List GGUF models managed by Ollama

Description

This helper scans common Ollama installation directories for downloaded GGUF weights that can

be loaded directly by the ‘llama.cpp‘ backend. It inspects both manifest metadata (when available)
and the blobs directory to return human-readable model descriptions.

Usage
list_ollama_models(min_size_mb = 50, verify = TRUE)

Arguments

min_size_mb Minimum size (in megabytes) for a candidate GGUF file. Defaults to 50 MB to
avoid tiny placeholder layers.
verify

Whether to confirm the GGUF magic header before listing the model (default
‘TRUE).

Value

A data.frame with columns: ‘name°, ‘path‘, ‘size_mb°, ‘size_gb°, ‘size_bytes‘, ‘sha256°, ‘modi-
fied‘, ‘source’, ‘tag‘, ‘model‘. Returns an empty data.frame if no models are found.

model_load Load Language Model with Automatic Download Support

Description

Loads a GGUF format language model from local path or URL with intelligent caching and down-
load management. Supports various model sources including Hugging Face, Ollama repositories,
and direct HTTPS URLs. Models are automatically cached to avoid repeated downloads.

24

Usage

model_load(
model_path,

cache_dir =
n_gpu_layers

model load

NULL,
= oL,

use_mmap = TRUE,
use_mlock = FALSE,

show_progress

= TRUE,

force_redownload = FALSE,
verify_integrity = TRUE,
check_memory = TRUE,
hf_token = NULL,
verbosity = 1L

Arguments

model_path

cache_dir

n_gpu_layers

use_mmap

use_mlock

show_progress

Path to local GGUF model file, URL, or cached model name. Supported URL
formats:

e https:// - Direct download from web servers

If you previously downloaded a model through this package you can supply the
cached file name (or a distinctive fragment of it) instead of the full path or URL.
The loader will search the local cache and offer any matches.

Custom directory for downloaded models (default: NULL uses system cache
directory)

Number of transformer layers to offload to GPU (default: 0 for CPU-only). Set
to -1 to offload all layers, or a positive integer for partial offloading

Enable memory mapping for efficient model loading (default: TRUE). Disable
only if experiencing memory issues

Lock model in physical memory to prevent swapping (default: FALSE). Enable
for better performance but requires sufficient RAM

Display download progress bar for remote models (default: TRUE)

force_redownload

Force re-download even if cached version exists (default: FALSE). Useful for
updating to newer model versions

verify_integrity

check_memory

hf_token

verbosity

Verify file integrity using checksums when available (default: TRUE)
Check if sufficient system memory is available before loading (default: TRUE)

Optional Hugging Face access token to set during model resolution. Defaults to
the existing ‘HF_TOKEN" environment variable.

Control backend logging during model loading (default: 1L). Larger numbers
print more detail: @ shows only errors, 1 adds warnings, 2 prints informational
messages, and 3 enables the most verbose debug output.

quick_llama 25

Value

A model object (external pointer) that can be used with context_create, tokenize, and other
model functions

See Also

context_create, download_model, get_model_cache_dir, list_cached_models

Examples

Not run:
Load local GGUF model
model <- model_load("/path/to/my_model.gguf")

Download from Hugging Face and cache locally
hf_path = "https://huggingface.co/Qwen/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B-Q8_0.gguf"
model <- model_load(hf_path)

Load with GPU acceleration (offload 10 layers)
model <- model_load("/path/to/model.gguf”, n_gpu_layers = 10)

Download to custom cache directory
model <- model_load(hf_path,
cache_dir = file.path(tempdir(), "my_models"))

Force fresh download (ignore cache)
model <- model_load(hf_path,
force_redownload = TRUE)

High-performance settings for large models

model <- model_load("/path/to/large_model.gguf”,
n_gpu_layers = -1, # All layers on GPU
use_mlock = TRUE) # Lock in memory

Load with minimal verbosity (quiet mode)
model <- model_load("/path/to/model.gguf”, verbosity = 2L)

End(Not run)

quick_llama Quick LLaMA Inference

Description

A high-level convenience function that provides one-line LLM inference. Automatically handles
model downloading, loading, and text generation with optional chat template formatting and system
prompts for instruction-tuned models.

26

Usage
quick_llama(

quick_llama

prompt,

model = .get_default_model(),
n_threads = NULL,
n_gpu_layers = "auto”,

n_ctx = 2048L,

verbosity = 1L,

max_tokens = 100L,

top_k = 4oL,
top_p = 1,
temperature = 0,
repeat_last_n = oL,

penalty_repeat = 1,

min_p = 0.05,

system_prompt = "You are a helpful assistant.”,
auto_format = TRUE,

chat_template = NULL,

stream = FALSE,

seed = 1234L,
progress = interactive(),
clean = TRUE,
hash = TRUE,
)
Arguments
prompt Character string or vector of prompts to process
model Model URL or path (default: Llama 3.2 3B Instruct Q5_K_M)
n_threads Number of threads (default: auto-detect)

n_gpu_layers
n_ctx

verbosity

max_tokens
top_k

top_p
temperature

repeat_last_n

penalty_repeat

min_p

Number of GPU layers (default: auto-detect)
Context size (default: 2048)

Backend logging verbosity (default: 1L). Higher values show more detail: @
prints only errors, 1 adds warnings, 2 includes informational messages, and 3
enables the most verbose debug output.

Maximum tokens to generate (default: 100)

Top-k sampling (default: 40). Limits vocabulary to k most likely tokens
Top-p sampling (default: 1.0). Set to 0.9 for nucleus sampling
Sampling temperature (default: 0.0). Higher values increase creativity

Number of recent tokens to consider for repetition penalty (default: 0). Set to 0
to disable

Repetition penalty strength (default: 1.0). Set to 1.0 to disable
Minimum probability threshold (default: 0.05)

quick_llama 27

system_prompt System prompt to add to conversation (default: "You are a helpful assistant.")
auto_format Whether to automatically apply chat template formatting (default: TRUE)
chat_template Custom chat template to use (default: NULL uses model’s built-in template)

stream Whether to stream output (default: auto-detect based on interactive())

seed Random seed for reproducibility (default: 1234)

progress Show a console progress bar when running parallel generation. Default: interactive().
Has no effect for single-prompt runs.

clean Whether to strip chat-template control tokens from the generated output. De-
faults to TRUE.

hash When ‘TRUE‘ (default), compute SHA-256 hashes for the prompts fed into the

"e

backend and the corresponding outputs. Hashes are attached via the ‘"hashes
attribute for later inspection.

Additional parameters passed to generate() or generate_parallel()

Value

Character string (single prompt) or named list (multiple prompts)

See Also

model_load, generate, generate_parallel, install_locallLLM

Examples

Not run:
Simple usage with default settings (deterministic)
response <- quick_llama("Hello, how are you?")

Raw text generation without chat template
raw_response <- quick_llama("Complete this: The capital of France is",
auto_format = FALSE)

Custom system prompt
code_response <- quick_llama("Write a Python hello world program”,
system_prompt = "You are a Python programming expert.”)

Creative writing with higher temperature

creative_response <- quick_llama("Tell me a story”,
temperature = 0.8,
max_tokens = 200)

Prevent repetition

no_repeat <- quick_llama("Explain AI",
repeat_last_n = 64,
penalty_repeat = 1.1)

Multiple prompts (parallel processing)
responses <- quick_llama(c("Summarize AI", "Explain quantum computing"),
max_tokens = 150)

28 set_hf token

End(Not run)

quick_llama_reset Reset quick_llama state

Description

Clears cached model and context objects, forcing fresh initialization on the next call to quick_llama().

Usage

quick_llama_reset()

Value

No return value, called for side effects (resets cached state).

set_hf_token Configure Hugging Face access token

Description

Utility helper to manage the ‘HF_TOKEN* environment variable used for authenticated downloads
from Hugging Face. The token is set for the current R session, and it can optionally be persisted to
a “Renviron‘ file for future sessions. The token is not printed back to the console.

Usage

set_hf_token(token, persist = FALSE, renviron_path = NULL)

Arguments
token Character scalar. Your Hugging Face access token, typically starting with ‘hf_°.
persist Logical flag controlling whether to persist the token to a startup file. Defaults to

‘FALSE".

renviron_path Optional path to the ‘Renviron‘ file to update when ‘persist = TRUE*. Must be
supplied explicitly when persisting.

Value

Invisibly returns the currently active token value.

smart_chat_template 29

Examples

Not run:

set_hf_token("hf_xxx")

tmp_env <- file.path(tempdir(), ".Renviron_locallLLM")
set_hf_token("hf_xxx", persist = TRUE, renviron_path = tmp_env)

End(Not run)

smart_chat_template Smart Chat Template Application

Description

Automatically detects the model type and applies the appropriate chat template. For Gemma mod-
els, uses the Gemma-specific format. For other models, falls back to the standard apply_chat_template
function.

Usage

smart_chat_template(model, messages, template = NULL, add_assistant = TRUE)

Arguments
model A model object created with model_load
messages A list of message objects
template Custom template (passed to apply_chat_template if not Gemma)

add_assistant Whether to add assistant turn prefix

Value

Formatted chat template string

tokenize Convert Text to Token IDs

Description

Converts text into a sequence of integer token IDs that the language model can process. This is the
first step in text generation, as models work with tokens rather than raw text. Different models may
use different tokenization schemes (BPE, SentencePiece, etc.).

Usage

tokenize(model, text, add_special = TRUE)

30 tokenize_test

Arguments
model A model object created with model_load
text Character string or vector to tokenize. Can be a single text or multiple texts

add_special Whether to add special tokens like BOS (Beginning of Sequence) and EOS (End
of Sequence) tokens (default: TRUE). These tokens help models understand text
boundaries

Value
Integer vector of token IDs corresponding to the input text. These can be used with generate for
text generation or detokenize to convert back to text

See Also

detokenize, generate, model_load

Examples

Not run:
Load model
model <- model_load("path/to/model.gguf")

Basic tokenization
tokens <- tokenize(model, "Hello, world!")
print(tokens) # e.g., c(15339, 11, 1917, @)

Tokenize without special tokens (for model inputs)
raw_tokens <- tokenize(model, "Continue this text"”, add_special = FALSE)

Tokenize multiple texts
batch_tokens <- tokenize(model, c("First text”, "Second text"))

Check tokenization of specific phrases
question_tokens <- tokenize(model, "What is AI?")

print(length(question_tokens)) # Number of tokens

End(Not run)

tokenize_test Test tokenize function (debugging)

Description

Test tokenize function (debugging)

Usage

tokenize_test(model)

validate 31

Arguments

model A model object

Value

Integer vector of tokens for "H"

validate Validate model predictions against gold labels and peer agreement

Description

‘validate()‘ is a convenience wrapper that runs both [compute_confusion_matrices()] and [inter-
coder_reliability()] so that a single call yields per-model confusion matrices (vs gold labels and
pairwise) as well as Cohen’s Kappa / Krippendorff’s Alpha scores.

Usage

validate(
annotations,
gold = NULL,
pairwise = TRUE,
label_levels = NULL,

sample_col = "sample_id",
model_col = "model_id",
label_col = "label”,

truth_col = "truth”,

method = c("auto”, "cohen”, "krippendorff"),
include_confusion = TRUE,
include_reliability = TRUE

)
Arguments
annotations Output from [explore()] or a compatible data frame with at least ‘sample_id‘,
‘model_id°, and ‘label‘ columns.
gold Optional vector of gold labels. Overrides the ‘truth‘ column when supplied.
pairwise When ‘TRUE®, cross-model confusion tables are returned even if no gold labels

exist.

label_levels Optional factor levels to enforce a consistent ordering in the resulting tables.
sample_col, model_col, label_col, truth_col
Column names to use when ‘annotations‘ is a custom data frame.

method One of “"auto"‘, “"cohen"*, or ‘"krippendorff"‘. The ‘"auto"‘ setting computes
both pairwise Cohen’s Kappa and Krippendorff’s Alpha (when applicable).

32 validate

include_confusion
When ‘TRUE* (default) the confusion matrices section is included in the output.
include_reliability
When ‘TRUE* (default) the intercoder reliability section is included in the out-
put.

Value

A list containing up to two elements: ‘confusion (the full result of [compute_confusion_matrices()])
and ‘reliability * (the result of [intercoder_reliability()]). Elements are omitted when the correspond-
ing ‘include_*‘ argument is ‘FALSE‘.

Examples

annotations <- data.frame(
sample_id = rep(1:3, times = 2),
model_id = rep(c(”llama”, "qwen"), each = 3),
label = C("pOS“, “neg"’ IV‘:)OSIIy llposll, llnegll, ”neg"),
truth = c("pos”, "neg", "pos”, "pos”, "pos”, "neg"),
stringsAsFactors = FALSE

)

result <- validate(annotations)
names(result)

Index

+ datasets
ag_news_sample, 5

* package
locallLLM-package, 2

ag_news_sample, 5
annotation_sink_csv, 5
apply_chat_template, 3, 6
apply_gemma_chat_template, 7

backend_free, 8
backend_init, 8

compute_confusion_matrices, 8
context_create, 3,9, 16-18, 25

detokenize, 3, 11, 30
document_end, 12
document_start, 12
download_model, 13, 25

explore, 14

generate, 3,6, 10, 11, 16, 27, 30
generate_parallel, 16, 17,17, 27
get_lib_path, 19, 21, 22
get_model_cache_dir, 19, 25

hardware_profile, 20

install_locallLM, 3, 719, 20, 22, 27
intercoder_reliability, 21

lib_is_installed, 19, 21, 22
list_cached_models, 22, 25
list_ollama_models, 23
locallLLM (locallLLM-package), 2
locallLM-package, 2

model_load, 3, 6, 10, 11, 23, 27, 30

quick_llama, 3,6, 17,25

33

quick_llama_reset, 28

set_hf_token, 28
smart_chat_template, 29

tokenize, 3, 10, 11, 25,29
tokenize_test, 30

validate, 31

	localLLM-package
	ag_news_sample
	annotation_sink_csv
	apply_chat_template
	apply_gemma_chat_template
	backend_free
	backend_init
	compute_confusion_matrices
	context_create
	detokenize
	document_end
	document_start
	download_model
	explore
	generate
	generate_parallel
	get_lib_path
	get_model_cache_dir
	hardware_profile
	install_localLLM
	intercoder_reliability
	lib_is_installed
	list_cached_models
	list_ollama_models
	model_load
	quick_llama
	quick_llama_reset
	set_hf_token
	smart_chat_template
	tokenize
	tokenize_test
	validate
	Index

