Package ‘diegr’

January 24, 2026
Title Dynamic and Interactive EEG Graphics
Version 0.2.0

Description Allows to visualize high-density electroencephalography (HD-EEG) data through interac-
tive plots and animations, enabling exploratory and communicative analysis of temporal-
spatial brain signals. Funder: Masaryk University (Grant No. MUNI/A/1457/2023).

License MIT + file LICENSE
Date 2026-01-23

Encoding UTF-8
RoxygenNote 7.3.3
Depends R (>=4.1.0)

Imports dplyr, rlang, ggplot2, gganimate, plotly, rgl, sp, scales,
stats, purrr, tidyr

LazyData true

Suggests av, gifski, magick, knitr, rmarkdown, testthat (>= 3.0.0)
VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

Author Zdenka Gerslova [aut, cre] (ORCID:
<https://orcid.org/0000-0003-1973-0479>),
Stanislav Katina [rev] (ORCID: <https://orcid.org/0000-0002-3256-5482>,
Reviewer and Supervisor),
Martin Lamos [ctb] (Provided anonymized data from the project AZV
NU21-04-0044)

Maintainer Zdeika GerSlova <gerslovaz@math.muni.cz>
Repository CRAN
Date/Publication 2026-01-24 20:00:02 UTC

https://orcid.org/0000-0003-1973-0479
https://orcid.org/0000-0002-3256-5482

2 animate_scalp
Contents
animate_scalp 2
ANIMALE_TOPO . . . v v v e e e e e e e e e e e e 4
animate_toPo_MEAN o v v e e e e e e e e e e e e e e e 6
baseline_Correction i e 8
boxplot_epoch L 10
bOXPIOt_It 11
boxplot_subject 12
COMPUEE_IMNEAN . . . v . v v et vt e e e e e e e e e e e e e e e e e 13
create_scale e 16
epochdata 18
HCGSN256 e e 19
interactive_waveforms e e e e e 20
make_triangulation 22
outliers_epoch L 23
pick_data 25
pick_region 27
plot_point_mesh 28
plot_time_mean e 30
plot_topo_mean e e 32
point_mesh 34
rtdata e 36
scalp_plot oL 37
SUMMAry_StatS_It e e e e e e e e e e e e 40
tOpo_plot e e 41
Index 44
animate_scalp 3D scalp plot animation in time
Description
Display a topographic 3D scalp animation of the change in amplitude over time. The function
enables direct rendering in Rstudio Viewer or saving the animation in MP4 format or individual
frames in PNG format to the chosen location.
Usage
animate_scalp(
data,
amplitude,
mesh,
tri,

coords = NULL,
template = NULL,
col_range = NULL,

animate_scalp 3

col_scale = NULL,
sec = 0.3,
frames_dir = NULL,
output_path = NULL,
framerate = 3,
cleanup = TRUE

)
Arguments

data An input data frame or tibble with at least this required columns: time - the
number of time point, sensor - the sensor label and the column with the EEG
amplitude to plot specified in the argument amplitude.

amplitude A character string naming the column with EEG amplitude values.

mesh An object of class "mesh” (or a named list with the same structure) used for
computing IM model. If not defined, the polygon point mesh with default set-
tings from point_mesh function is used. See scalp_plot for details about the
structure.

tri A matrix with indices of the triangles. If missing, the triangulation is computed
using make_triangulation function from D2 element of the mesh.

coords Sensor coordinates as a tibble or data frame with named x, y and z columns of

sensor coordinates and sensor column with sensor names. If not defined, the
HCGSN256 template is used.

template The kind of sensor template montage used. Currently the only available option
is "HCGSN256" denoting the 256-channel HydroCel Geodesic Sensor Net v.1.0,
which is also a default setting.

col_range A vector with minimum and maximum value of the amplitude used in the colour
palette for plotting. If not defined, the range of interpolated signal is used.

col_scale Optionally, a colour scale to be utilised for plotting. If not defined, it is computed
from col_range.

sec The time interval used between individual animation frames, in seconds (default:
0.3).

frames_dir Directory where the individual frames will be saved. If NULL, the video is only

displayed in viewer and the frames are not saved.

output_path Optional path to the output mp4 video file (".mp4" extension is required for
correct rendering). If NULL, no video is created.

framerate Number of frames per second for the output mp4 video (default: 3).

cleanup Logical. Indicates, if all the PNG files should be deleted after encoding video.
Default value is TRUE.

Details

Setting the parameter tri requires defining a mesh parameter. The parameter mesh should opti-
mally be a "mesh” object (output from point_mesh function) or a list with the same structure (see
point_mesh for more information). In that case, setting the argument tri is optional, and if it is

4 animate_topo

absent, a triangulation based on the D2 element of the mesh is calculated and used in the plot. If
the input mesh contains only 3D coordinates of a point mesh in D3 element, the use of previously
created triangulation (through tri argument) is required.

Notes: For exporting the video, setting frames_dir together with output_path is required.

When specifying the coords and template at the same time, the template parameter takes prece-
dence and the coords parameter is ignored.

Value

The output depends on the provided arguments:

e If frames_dir is specified, individual animation frames (PNG) are saved to that directory.
 If also output_path is specified, a video (MP4) is created and saved using the av package.

¢ Otherwise, the animation is displayed in an interactive rgl window.

See Also

Static version: scalp_plot, animated 2D topo map: animate_topo

Examples

This example may take a few seconds to render.

Run only if you want to generate the full animation.

Note: The example opens a rgl 3D viewer.

Prepare a data structure:

s1e@5 <- pick_data(epochdata, subject_rg = 1, epoch_rg = 5, time_rg = 10:20)
Plot animation with default mesh and triangulation:

animate_scalp(s1e@5, amplitude = "signal")
animate_topo Topographic map animation in time
Description

Display a topographic animation of the change in amplitude over time. The function enables direct
rendering in Rstudio Viewer or saving the animation in gif format to the chosen location.

Usage

animate_topo(
data,
amplitude,
t_lim,
FS = 250,
to = 1,
mesh,

animate_topo

coords = NULL,
template = NULL,
col_range = NULL,
col_scale = NULL,
show_legend = TRUE,
contour = FALSE,
output_path = NULL,

Arguments

data

amplitude

t_lim

FS
to

mesh

coords

template

col_range

col_scale

show_legend

contour

output_path

An input data frame or tibble with at least this required columns: time - the
number of time point,sensor - the sensor label and the column with the EEG
amplitude to plot specified in the argument amplitude.

A character specifying the name of the column from input data with EEG am-
plitude values.

A numeric vector of length 2 with limits of time points (i.e., the length of the
timeline displayed below the animation).

The sampling frequency. Default value is 250 Hz.

Index of the zero time point, i.e. point, where O ms should be marked (most
often time of the stimulus or time of the response).

A "mesh” object (or a named list with the same structure) containing at least D2
element with x and y coordinates of a point mesh used for computing IM model.
If not defined, the point mesh with default settings from point_mesh function
is used.

Sensor coordinates as a tibble or data frame with named x, y columns of sen-
sor coordinates and sensor column with sensor names. If not defined, the
HCGSN256 template is used.

The kind of sensor template montage used. Currently the only available option
is "HCGSN256" denoting the 256-channel HydroCel Geodesic Sensor Net v.1.0,
which is also a default setting.

A vector with minimum and maximum value of the amplitude used in the colour
palette for plotting. If not defined, the range of interpolated signal is used.

Optionally, a colour scale to be utilised for plotting. If not defined, it is computed
from col_range.

Logical. Indicates, whether legend should be displayed beside the graph. De-
fault value is TRUE.

Logical. Indicates, whether contours should be plotted in the graph. Default
value is FALSE.

File path where the animation will be saved using gifski renderer (optional).
If not defined, the animation is plotted in the RStudio Viewer.

Additional parameters for animation according to gganimate::animate.

6 animate_topo_mean

Details

For more details about required mesh structure see point_mesh function. If the input mesh structure
does not match this format, an error or incorrect function behavior may occur.

The time part of input data is assumed to be in numbers of time points, conversion to ms takes place
inside the function for drawing the timeline labels. Due to the flexibility of the function (e.g. to
mark and animate only a short section from the entire time course or to compare different data in
the same time interval), it allows to enter and plot user-defined time ranges. If some values of the
time are outside the t_lim range, the function writes a warning message - in that case the animation
is still rendered, but the timeline will not match reality.

Note: When specifying the coords and template at the same time, the template parameter takes
precedence and the coords parameter is ignored.

Value

If output_path is NULL, the function prints the animation to the RStudio Viewer. If output_path
is specified, the animation is saved to the given file path and not displayed.

See Also

Static version: topo_plot, animated 3D scalp map: animate_scalp

Examples

This example may take a few seconds to render.

Run only if you want to generate the full animation.

Prepare a data structure:

s1e@5 <- pick_data(epochdata, subject_rg = 1, epoch_rg = 5, time_rg = 10:20)
Plot animation

t0 = 10 indicates the time point of stimulus in epochdata,

t_lim is the whole range of epochdata, we animate only a short period
animate_topo(s1e@5, amplitude = "signal”, t_lim = c(1,50), t0 = 10)

animate_topo_mean Animate EEG average topographic map with confidence bounds

Description

An animation of the average signal time course as a topographic map along with the lower and
upper bounds of the confidence interval. In the output, three facets are plotted per frame: CI lower,
average, CI upper.

animate_topo_mean

animate_topo_mean(

data,

t_lim,

FS = 250,

to =1,

mesh,

coords = NULL,
template = NULL,
col_range = NULL,
col_scale = NULL,
show_legend = TRUE,
contour = FALSE,
output_path = NULL,

Arguments

data

t_lim

FS
to

mesh

coords

template

col_range

col_scale

show_legend

contour

A data frame, tibble or a database table with input data to plot. It should be an
output from compute_mean function or an object with the same structure. Re-
quired columns: sensor - sensor labels, time - numbers of time points, average
- average signal values, ci_low and ci_up - lower and upper CI bounds.

Limits of time points (i.e., the length of the timeline displayed below the anima-
tion).
The sampling frequency. Default value is 250 Hz.

Index of the zero time point, i.e. point, where 0 ms should be marked (most
often time of the stimulus or time of the response).

A "mesh” object (or a named list with the same structure) containing at least D2
element with x and y coordinates of a point mesh used for computing IM model.
If not defined, the point mesh with default settings from point_mesh function
is used.

Sensor coordinates as a tibble or data frame with named x, y columns of sen-
sor coordinates and sensor column with sensor names. If not defined, the
HCGSN256 template is used.

The kind of sensor template montage used. Currently the only available option
is "HCGSN256" denoting the 256-channel HydroCel Geodesic Sensor Net v.1.0,
which is also a default setting.

A vector with minimum and maximum value of the amplitude used in the colour
palette for plotting. If not defined, the range of the input signal is used.

Optionally, a colour scale to be utilised for plotting. If not defined, it is computed
from col_range.

Logical. Indicates, whether legend should be displayed below the graph. Default
value is TRUE.

Logical. Indicates, whether contours should be plotted in the graph. Default
value is FALSE.

8 baseline_correction

output_path File path where the animation will be saved using gifski renderer (optional).
If not defined, the animation is plotted in the RStudio Viewer.

Additional parameters for animation according to gganimate::animate.

Details

Note: When specifying the coords and template at the same time, the template parameter takes
precedence and the coords parameter is ignored.

Value

If output_path is NULL, the function prints the animation to the RStudio Viewer. If output_path
is specified, the animation is saved to the given file path and not displayed. The gifski and magick
packages are required for animation export.

See Also

animate_topo, compute_mean, baseline_correction, static version: plot_topo_mean

Examples

This example may take a few seconds to render.
Run only if you want to generate the full animation.

a) prepare data: compute the mean from baseline corrected signal for subject 2,

first 10 points and only 13 epochs (epochs 14 and 15 are outliers)

edata <- pick_data(epochdata, subject_rg = 2, epoch_rg = 1:13, time_rg = 1:10)
data_base <- baseline_correction(edata, baseline_range = 1:10) # baseline correction
data_mean <- compute_mean(data_base, amplitude = "signal_base”,

type = "jack”, domain = "space") # compute mean
b) render the animation
(t@ = 10 because the time of the stimulus in epochdata is in time point 10)
animate_topo_mean(data_mean, t_lim = c(1,50), t0 = 10)

baseline_correction Baseline correction

Description

Compute amplitude values corrected to the selected baseline.

The function computes a baseline value within each epoch and subtracts it from the signal.

Usage

baseline_correction(data, baseline_range, type = "absolute")

baseline_correction 9

Arguments

data A data frame, tibble or a database table with input data, required columns:
time and signal. Optional columns: group, subject, sensor, condition
and epoch, if present, are included in the grouping structure.

baseline_range A numeric vector of time points used as the baseline (e.g., baseline_range =
125:250).

type A character specifying the type of baseline correction. Currently, only "absolute”
is supported, any other value results in an error.

Details

If the values from baseline_range vector extend beyond the range of the time column, the base-
line computation proceeds as follows:

1. If a part of the baseline_range vector is in the time column and part is outside its range, the
baseline correction is computed only from the part inside a time range.

2. If the whole baseline_range vector is out of the time range, the baseline and also the
signal_base values of the output are NA’s. In both cases, the function returns the output data
along with a warning.

Notes:

* Rows with NA values in the signal column are ignored when computing the baseline, and a
warning is issued.

* If any grouping variable present in the data contains only NA values, a warning is issued, as
this may lead to invalid or uninformative grouping.

Value

A data frame/tibble with added columns:

signal_base Signal corrected by subtracting the baseline for each epoch.
baseline A baseline value used for correction.
Examples

Computing baseline correction for subject 1 on first 10 points, sensor "E1"

a) Prepare data and compute

data@l <- epochdata |> dplyr::filter(.data$subject == 1 & .data$sensor == "E1")
basedata <- baseline_correction(data@1, baseline_range = 1:10, type = "absolute")

Note: You can also use baseline_correction() on the whole epochdata
and then filter selected subject and sensor, the results are the same,
the procedure above was chosen only for the speed of the example.

b) Plot raw (black line) and corrected (red line) signal for epoch 1

epochl <- basedata |> dplyr::filter(.data$epoch == 1)

plot(epoch1$signal, type = "1", ylim = c(-20, 30), main = "Raw (black) vs Corrected (red) Signal”,
xlab = "time point”, ylab = "amplitude")

lines(epoch1$signal_base, col = "red")

10 boxplot_epoch

Set baseline_range outside of time range
results in NA's in baseline and signal_base columns,
also returns a warning message

basedata <- baseline_correction(data®@l, baseline_range = 70:80, type = "absolute”)
head(basedata)
boxplot_epoch Plot interactive boxplots of EEG amplitude on epoch level
Description

Function for plotting interactive boxplots of EEG amplitude in individual epochs within the chosen
time interval. The function assumes data from a single subject and a single sensor. The interactive
plotly output enables to easily determine the epoch number from which outliers come and also
allows to easily edit the image layout.

Usage

boxplot_epoch(
data,
amplitude = "signal”,
epoch = NULL,
time_lim,
title_label = NULL,
use_latex = TRUE

)
Arguments

data A data frame or a database table with EEG dataset. Required columns: epoch,
time and the column with EEG amplitude named as in amplitude parameter.

amplitude A character specifying the name of the column from input data with an EEG
amplitude values. Default is "signal”.

epoch A vector with numbers of epochs to plot. If missing, boxplots are drawn for all
avaliable epochs in data.

time_lim A numeric vector with time range to plot.

title_label A character string specifying the title of the plot. Defaults to NULL for plot
without title.

use_latex A logical value indicating whether to use LaTeX formatting for the y-axis title.
The default is TRUE.

boxplot_rt 11

Details

The input data frame or database table must contain at least following columns: epoch - a column
with epoch numbers, time - a column with time point numbers, and a column with measured EEG
signal values (or their averages) called as in amplitude.

Value

A plotly object with boxplots of EEG amplitude for individual epochs.

See Also

boxplot_subject

Examples

Interactive boxplots of signal from channel E34 for subject 1 (health control)
in time points 10:20

epochdata |>

pick_data(subject_rg = 1, sensor_rg = "E34") |>

boxplot_epoch(amplitude = "signal”, time_lim = c(10:20),

title_label = "Subject 1, channel E34")

boxplot_rt Plot interactive boxplots of response times

Description

Function for plotting interactive boxplots of response time in individual epochs for selected subjects.
If the condition column is present in the input data, the boxplots are color-coded by condition. The
interactive plotly output enables to easily determine the epoch number from which outliers come
and also allows to easily edit the image layout.

Usage

boxplot_rt(data, subject = NULL)

Arguments
data A data frame or a database table containing response time data. Required columns:
subject, epoch, RT (value of response time in ms). An optional condition col-
umn may be used to colour-code the boxplots.
subject A vector with IDs of subjects to plot. If missing, boxplots are drawn for all
available subjects in data.
Value

A plotly object with boxplots of response times.

12 boxplot_subject

Examples

Display interactive boxplots for both example subjects
boxplot_rt(rtdata)

Interactive boxplots per subject divided by condition

a) add condition column to data (just for example)

data_cond <- rtdata

data_cond$condition <- c(rep("a", 7), rep("b", 7), rep("a", 8), rep("b",7))
b) plot boxplots (colour-coded by condition)

boxplot_rt(data_cond)

boxplot_subject Plot interactive boxplots of EEG amplitude across subjects

Description

Function for plotting interactive boxplots of EEG amplitude across subjects for a single epoch and
channel, within a specified time interval. The function assumes data from a single epoch and a
single sensor. The interactive plotly output enables to easily determine the subjects with outlier
amplitude and also allows to easily edit the image layout.

Usage

boxplot_subject(
data,
amplitude = "signal”,
subject = NULL,
time_lim,
title_label = NULL,
use_latex = TRUE

)
Arguments

data A data frame or a database table with EEG dataset. Required columns: subject,
sensor, time and the column with EEG amplitude named as in amplitude
parameter.

amplitude A character specifying the name of the column from input data with an EEG
amplitude values. Default is "signal”.

subject A vector with IDs of subjects to plot. If missing, boxplots are drawn for all
avaliable subjects in data.

time_lim A numeric vector with time range to plot.

title_label A character string specifying the title of the plot. Defaults to NULL for plot
without title.

use_latex A logical value indicating whether to use LaTeX formatting for the y-axis title.
The default is TRUE.

compute_mean 13

Details

The input data frame or database table must contain at least following columns: subject - a column
with subject IDs, time - a column with time point numbers, and a column with measured EEG signal
values (or their averages) called as in amplitude.

Note: The function assumes that subject IDs are unique across the entire dataset. Using the same
subject IDs in multiple groups may result in incorrect or misleading visualizations.

Value

A plotly object with boxplots of EEG amplitude across subjects.

See Also

boxplot_epoch

Examples

Interactive boxplots of signal from channel E34 in epoch 1

for both subjects in chosen time points

Note: it has no statistical sense to make boxplot from only 2 observations, but
larger example dataset is not possible due to size limit of the package
epochdata |>

pick_data(sensor_rg = "E34", epoch_rg = 1) |>

boxplot_subject(amplitude = "signal”, time_lim = c(10:20),

title_label = "Sensor E34, epoch 1")

compute_mean Calculate mean in temporal or spatial domain

Description

Calculate a pointwise or a jackknife (leave-one-out) average signal across temporal or spatial do-
main together with standard error and pointwise confidence interval (CI) bounds. Pointwise aver-
ages can be computed in two ways: standard (un-weighted) by default, or weighted using the values
in the column specified by weights_col.

The function computes an average at group, subject, sensor/time point, condition or epoch level
(according to the level parameter). For the option level = "epoch” the epochs are averaged etc.
Function assumes pre-prepared data according to the chosen level.

Usage
compute_mean(
data,
amplitude = "signal_base”,
domain = c("time", "space"),

level = c("epoch”, "condition”, "sensor”, "subject”, "group"),

14

compute_mean

type = c("point”, "jack"),
weights_col = NULL,

R = NULL,
alpha = 0.95

Arguments

data

amplitude

domain

level

type

weights_col

alpha

Details

A data frame, tibble or a database table with input data, required columns: time
or sensor (according to the selected domain), the column with the EEG am-
plitude specified in the argument amplitude and columns corresponding to the
selected level.

A character specifying the name of the column from input data with an EEG am-
plitude values. Default is "signal_base” for computing average from baseline
corrected signal.

A character specifying the domain over which the average is computed. One of
"time" or "space”. Option "time"” computes a time-resolved average at each
time point, whereas "space” computes a space-resolved average at each sensor.

A character specifying the level of average calculation. The possible values are
"epoch”,"condition"”, "sensor”, "subject” and "group"”. See Details for
more information.

A character specifying the method of calculating the average, "point” for point-
wise average and " jack" for jackknife leave-one-out average.

A character specifying the name of the column containing observation weights.
If NULL, un-weighted standard pointwise average is computed.

The number of replications used in bootstrap interval calculation. Required only
for computing pointwise mean. Default value is 1000.

A number indicating confidence interval level. The default value is 0.95 for 95%
confidence intervals.

The function supports averaging at different hierarchical levels of the data (using level argument):

* "epoch”: averaging across epochs. Returns the average curve (time domain) or sensor array
(space domain) for each combination of other grouping variables.

* "condition": averages across experimental conditions.

* "sensor": averages across sensors (space domain) or time points (time domain).

* "subject": averages across subjects.

* "group”: averages across groups of subjects (highest aggregation level). The function as-
sumes input adapted to the desired level of averaging (i.e. for epoch level the epoch column
must be present in data etc.). For all levels higher than epochs, the averages of the lower level
are assumed as the input data.

Weighted vs un-weighted average (type = "point"):

compute_mean 15

e If weights_col is NULL, each observation is treated equally (with weight = 1), producing a
standard un-weighted mean, standard errors (SE), and CIL.

» If weight_cols is provided, a weighted average is computed using the values in the specified
column as weights. SE and CI are computed based on the weighted variance.

Computing standard error of the mean:

 For type = "point”, the standard error is computed as sample standard deviation divided by
square root of the sample size for standard mean or its weighted alternative (if weights_col
is specified).

* For type = "jack"”, the standard error is jackknife standard error of the mean (for the exact
formula see Efron and Tibshirani 1994).

Computing point confidence intervals: For each average value, the upper and lower bounds of the
point confidence interval are also available.

 Setting type = "point” and R: the bounds are computed using percentile method from boot-
strapping with R replicates (can be slow for large amounts of data).

* Setting type = "point” without specifying R: the bounds are computed using standard error
of the mean and approximation by the Student distribution.

* Setting type = "jack": the bounds are computed using jackknife standard error of the mean
and approximation by the Student t-distribution. Note: used method assumes equal variance
and symmetric distribution, which may be problematic for very small samples.

Note: If there are NA’s in amplitude or weights_col columns, corresponding rows are ignored in
the average calculation and function prints a warning message.

Value

A tibble with resulting average and CI bounds according to the chosen level, domain and alpha
arguments. The statistics are saved in columns

* average for computed average amplitude value,

* n for number of observations used in average computing,

* se for standard error of the mean,

* ci_low for lower bound of the confidence interval and

* ci_up for upper bound of the confidence interval.

References

Efron B., Tibshirani RJ. An Introduction to the Bootstrap. Chapman & Hall/CRC; 1994.

Examples

Average (pointwise) raw signal for subject 1 and electrode E1

without outlier epoch 14

avg_data <- epochdata |>

pick_data(subject_rg = 1, epoch_rg = 1:13, sensor_rg = "E1") |>
compute_mean(amplitude = "signal”, level = "epoch”, domain = "time")

16 create_scale

str(avg_data)

plot the result using interactive plot with pointwise CI
avg_data |>

pick_data(subject = 1) [>

interactive_waveforms(amplitude = "average”, t0 = 10,
level = "sensor”, avg = FALSE, CI = TRUE)

Jackknife average signal for subject 1 in all electrodes in time point 11 with baseline correction
on interval 1:10 (again without outlier epoch 14)

a) prepare corrected data

basedata <- pick_data(epochdata, subject_rg = 1) |>

baseline_correction(baseline_range = 1:10, type = "absolute")

b) filter time point 11 (without epoch 14) and compute the average

avg_data <- pick_data(basedata, time_rg = 11, epoch_rg = 1:13) [>
compute_mean(amplitude = "signal_base”, level = "epoch”, domain = "space"”, type = "jack")
str(avg_data)

c) plot the result with topo_plot()

topo_plot(data = avg_data, amplitude = "average")

Space average on subject level (average for all included subjects in time point 11)
a) compute mean from all epochs for each subject

mean_epoch <- epochdata |>

pick_data(time_rg = 11, epoch_rg = 1:13) |>

compute_mean(amplitude = "signal”, level = "epoch”, domain = "space”, type = "point")
b) compute mean on subject level

mean_subjects <- compute_mean(mean_epoch, amplitude = "average"”, level = "subject”,
domain = "space"”, type = "point")

head(mean_subjects)

c) compute weighted mean with number of observations as weights

weighted_mean_subjects <- compute_mean(mean_epoch, amplitude = "average"”, level = "subject”,
domain = "space”, type = "point"”, weights_col = "n")

head(weighted_mean_subjects)

create_scale Create colour scale used in topographic figures

Description

Create colour scale used in topographic figures

Usage

create_scale(col_range, k = NULL, type = c("topo”, "redblue"))

Arguments

col_range A numeric vector with required range of the variable to be plotted in the colour
scale.

create_scale 17

k A number from interval (0,1) indicating a sequence step for the colour palette.
The smaller number, the finer division of the data range interval. See Details for
more information about auto-computing if NULL.

type A character indicating the type of color palette to create. Available options:
"topo"” (default value) for topographical palette and "redblue” for red-blue
palette, see Details for more information.

Details

The topographical palette (type = "topo") is created according to topographical colours: negative
values correspond to shades of blue and purple and positive values to shades of green, yellow and
red. The zero value of the variable is always at the border of blue and green shades.

The red-blue palette (type = "redblue”) has negative values corresponding to shades of blue and
positive values corresponding to shades of red.

To compare results for different subjects or conditions, set the same col_range for all cases. Oth-
erwise, the colours are assigned separately in each plot and are not consistent with each other.

The parameter k is set by default with respect to the range of col_range as follows:

* k=0.1 for range < 30,
* k =0.03 for range > 70,

e k =0.04 otherwise.

Value

A list with two components:

colors A vector with hexadecimal codes of palette colours.

breaks A vector with breaks for cutting the data range.

The list is intended for use in scale_fill_gradientn or similar plotting calls.

Examples

Create red-blue scale on interval (-10,10) with default step number
create_scale(col_range = ¢c(-10,10), type = "redblue")

Create topographic scale on interval c(-5,10) with small k (finer division)
CStopo <- create_scale(col_range = c(-5, 10), k = 0.02)

plot colours of the scale as points

k_col <- length(CStopo$colors)

plot(1:k_col, rep(1, k_col), col = CStopo$colors, pch = 16,

axes = FALSE, ylab = "", xlab = "")

18 epochdata

epochdata Example high-density (HD-EEG) epoched data

Description

This dataset is a short slice of a HD-EEG dataset from a study investigating the impact of deep
brain stimulation on patients with advanced Parkinson’s disease (Madetko-Alster, 2025). During
the experiment subjects performed a simple visual motor task (pressing the response button in case
of target visual stimulus presentation). The data was measured by 256-channel HydroCel Geodesic
Sensor Net and sampling frequency is 250 Hz. The study was carried out by Central European
Institute of Technology in Brno and was supported by Czech Health Research Council AZV NU21-
04-00445.

Example dataset contains amplitude values measured on chosen 204 channels in 50 time points
(with the stimulus in the time point 10) for 2 representative subjects (one patient and one healthy
control subject). From the total number of 50 epochs for each subject, 14 (or 15) epochs were se-
lected for the sample dataset. This data is intended for testing EEG preprocessing and visualization
methods.

Usage

data("epochdata”)

Format

The data frame consist of 295 800 rows (50 time points x 204 sensors x 29 epochs) and five columns:

time Number of time point. Time point 10 corresponds to stimulus onset (0 ms) and the interval
between two time points corresponds to the time period 4 ms.

signal HD-EEG signal amplitude, in microvolts.

epoch Factor variable with epoch number, 14 epochs for subject 1, 15 epochs for subject 2.

sensor Sensor label, according to labeling used in the EGI Geodesic Sensor Net Technical Manual.

subject Factor variable with subject ID, 1 - representative healthy control subject, 2 - representative
patient subject.
Source

Central European Institute of Technology, Masaryk University, Brno, Czech Republic.

References

EGI Geodesic Sensor Net Technical Manual (2024) https://www.egi.com/knowledge-center

Madetko-Alster N., Alster P., LamoS M., Smahovsk4 L., Bousek T., Rektor I. and Bockova M.
The role of the somatosensory cortex in self-paced movement impairment in Parkinson’s disease.
Clinical Neurophysiology. 2025, vol. 171, 11-17.

https://www.egi.com/knowledge-center

HCGSN256 19

Examples

Data preview
head(epochdata)

HCGSN256 Coordinates of 256-channel HCGSN sensors

Description

A file containing the Cartesian coordinates of high-density EEG sensor positions in 3D space on
the scalp surface and their positions in 2D space. The coordinates belong to 256-channel Hydro-
Cel Geodesic Sensor Net (GSN) average template montage. This template contains 257 electrode
positions (including reference).

Usage
data("HCGSN256")

Format
A list with following elements:
D2 A tibble with 3 columns containing x and y coordinates and sensor labels (according to EGI

GSN Technical Manual) in 2D.

D3 A tibble with 4 columns containing x, y and z coordinates and sensor labels in 3D. See ’Details’
for more information.

ROI Factor containing the name of the region to which the corresponding sensor belongs. The
levels are: "central", "frontal", "occipital”, "parietal”, "temporal" and "face" for electrodes
from the face area.

Details
The axis orientation in the 3D case is as follows:

* x-axis: left (-) to right (+),

* y-axis: posterior (-) to anterior (+),

e z-axis: inferior (-) to superior (+). The reference electrode (Cz) is fixed at point (0, 0, Z),
where Z is the positive height of Cz. The nasion is fixed at (0, Y, Z). Since both the nasion
and Cz are always fixed at x = 0, they are assumed to be in the same y plane. The origin is the

center of the head, defined as the center of a sphere fit to fiducial points above the plane made
up of the Left Preauricular Point (LPA), the Right Preauricular Point (RPA), and the nasion.

The 2D coordinates were created by EGI team by positioning the channels to maximize use of
screen space and to preserve the head shape as much as possible.

The regions in ROI were determined by an expert from Central European Institute of Technology,
Masaryk University, Brno, Czech Republic.

20 interactive_waveforms

Source

Central European Institute of Technology, Masaryk University, Brno, Czech Republic.

References

EGI Geodesic Sensor Net Technical Manual (2024), https://www.egi.com/knowledge-center

Examples

A simple plot of sensor coordinates from HCGSN256 template as points in 2D
plot (HCGSN256$D2[,1:2], pch = 16, asp = 1)

interactive_waveforms Plot interactive waveform graph

Description

Function for plotting time series of EEG signal colour-coded by epoch, condition, channel, subject
or group (depending on selected level parameter) an interactive plotly graph. The function as-
sumes that the input data have already been filtered to the desired subset according to the level.
When using the function for plotting the average, there is an option to add a confidence band using
the CI argument. The output in plotly format enables to easily edit the image layout.

Usage
interactive_waveforms(
data,
amplitude = "signal”,
FS = 250,
t0 = NULL,
col_palette,
level = "epoch”,
avg = TRUE,
CI = FALSE,
use_latex = TRUE
)
Arguments
data A data frame, tibble or a database table with input data containing a time column
and columns corresponding to the selected amplitude and level parameter (see
Details).
amplitude A character specifying the name of the column from input data with an EEG

amplitude values. Default is "signal”.

FS The sampling frequency. Default value is 250 Hz.

https://www.egi.com/knowledge-center

interactive_waveforms 21

t0 Index of the zero time point, i.e. point, where 0 ms should be marked (most
often time of the stimulus or time of the response).

col_palette Optionally, a colour palette for plotting lines. If missing, the rainbow palette is
used. The expected length is the same (or higher) as the number of unique levels
(e.g. number of epochs for level = "epoch").

level A character specifying the level of the time curves. The possible values are
"epoch” (default option), "condition"”, "sensor”, "subject” and "group”.
See details for more information.

avg A logical value indicating, if the average black curve should be plotted. Default
is TRUE.
CI A logical value indicating, if the confidence ribbon should be plotted. Default is
FALSE. See Details for more information.
use_latex A logical value indicating whether to use LaTeX formatting for the y-axis title.
The default is TRUE.
Details

The input data frame or database table must contain column time (a column with time point num-
bers) and a column with the EEG amplitude (or average amplitude) specified in the argument
amplitude. It must also contain at least one of the optional columns (according to the level
parameter - for "sensor"” level the column sensor is required etc.): group - a column with group
identifiers, subject - a column with subject IDs, sensor - a column with sensor labels, epoch - a
column with epoch numbers.

Note: The average signals must be pre-aggregated before plotting at higher grouping levels, for
example sensor level assumes a mean sensor signal in the amplitude column (the input data for
individual epochs together with sensor level setting will result in a mess output).

Plotting confidence ribbon: To plot the confidence bands around the average lines (CI = TRUE), the
input data must include the ci_up and ci_low columns (as in the output tibble from compute_mean
function).

Value

A plotly object showing an interactive time series of the signal according to the chosen level.

Examples

1) Plot epoch waveforms with average curve for subject 1 and electrode "E65"
with 250 sampling frequency rate (default) and 10 as zero time point
epochdata |>

pick_data(subject_rg = 1, sensor_rg = "E65") |>
interactive_waveforms(amplitude = "signal”, t@ = 10, level = "epoch")

2) Plot sensor level waveforms with confidence bands for subject 1 and electrodes "E65" and "E182"
a) preparing data

sendata <- epochdata |>

pick_data(subject_rg = 1, sensor_rg = c("E65", "E182")) |>

compute_mean(amplitude = "signal”, domain = "time"”, level = "epoch")

b) plot the waveforms without the average

22 make_triangulation

interactive_waveforms(sendata, amplitude = "average", t0 = 10,
level = "sensor"”, avg = FALSE, CI = TRUE)

make_triangulation Make triangulation of 2D point mesh

Description

Function for creating Delaunay type-I triangulation (see Schumaker 2007) with consistent oriented
edges adapted for a regular point mesh created by point_mesh function. See Details for more
information.

Usage

make_triangulation(mesh)

Arguments
mesh A data frame or tibble with named columns: x, y (required) and index (op-
tionally, if missing, it will be generated internally). It should optimally be a D2
element of a "mesh” object or a list with the same structure of uniformly spaced
grid.
Details

The type-I Delaunay triangulation is a triangulation obtained by drawing in the north-east diagonals
in all subrectangles of the triangulated area. Due to the regularity of the input mesh (in the sense of
distances between mesh points), a simplified procedure is used: The triangulation is created within
the individual strips and then bound together. The order of the vertices is chosen to maintain a
consistent orientation of the triangles (for more details see Schneider 2003).

If the input mesh has not regular grid spacing, the result triangulation may not be meaningful and
will not meet the Delaunay triangulation criteria.

Value
A three column matrix with indices of the vertices of the triangles. Each row represents one triangle,
defined by three vertex indices pointing to rows in the input mesh.

References

Lai M-J, Schumaker LL. Spline functions on triangulations. Cambridge University Press; 2007.

Schneider PJ, Eberly DH. Geometric Tools for Computer Graphics. The Morgan Kaufmann Series
in Computer Graphics. San Francisco: Morgan Kaufmann, 2003.

outliers_epoch 23

Examples

a) Create small mesh for triangulation example
using 204 electrodes from epochdata

M <- point_mesh(n = 500, template = "HCGSN256",
sensor_select = unique(epochdata$sensor))

b) Make triangulation on this mesh
TRI <- make_triangulation(M$D2)
head(TRI)

c) plot triangulation in 2D
prepare empty plot
plot(M$D2, type = "n", main = "Triangulation plot”,

xlab = "", ylab = "", asp = 1, axes = FALSE)
create a structure for plotting

x0 <- c()

yo <= cQ)

x1 <= c()

y1 <= ¢cQ

for (i in T:nrow(TRI)) {
v_indices <- TRI[i,]
v_coords <- M$D2[v_indices,]
X0 <- c(x@, v_coords[1, "x"], v_coords[2, "x"], v_coords[3, "x"])
y0 <- c(y@, v_coords[1, "y"1, v_coords[2, "y"1, v_coords[3, "y"1)
x1 <= c(x1, v_coords[2, "x"], v_coords[3, "x"], v_coords[1, "x"1)
y1 <- c(y1, v_coords[2, "y"1, v_coords[3, "y"1, v_coords[1, "y"1)
3

plot triangulation using segments

segments(x@, yo, x1, y1)

Note: this code opens a rgl 3D viewer

d) Plot the result triangulation as 3D wire model using rgl
rgl::open3d()
rgl::wire3d(rgl::mesh3d(M$D3$x, M$D3$y, M$D3$z, triangles = t(TRI)))

outliers_epoch Select outlier epochs

Description

Function identifies epochs with outlier values in a numeric EEG amplitude variable in chosen time
points. Outliers are detected separately at each time point within the groups present in the data.
The function then summarizes how many times each epoch was marked as an outlier across all time
points.

Epochs are marked as outliers based on one of the following criteria: interquartile range criterion,
percentile approach or Hampel filter method.

24

Usage

outliers_epoch(

data,

amplitude
time = NULL,

outliers_epoch

"signal”,

method = c("iqr"”, "percentile”, "hampel”),

k_iqr =
k_mad =

p = 0.975,

print_tab = TRUE

Arguments

data

amplitude

time

method

k_iqgr

k_mad

print_tab

Details

A data frame, tibble or a database table with input data, required columns: time,
epoch and the column with EEG amplitude specified by amplitude parameter.
Optional columns: group, subject, sensor, condition.

A character specifying the name of the column from input data with an EEG
amplitude values. Default is "signal”.

A vector with time range for outliers detection. If not defined, the outliers are
searched for all time points in the dataset.

A character denoting the method used for outlier detection. The options are:
"igr"” for interquartile range (IQR) criterion (default value), "percentile” for
percentile method and "hampel” for Hampel filter method. See details for fur-
ther information about methods.

A positive numeric value denoting the scaling factor used in the IQR criterion.
Default value is k_iqr =1.5.

A positive numeric value denoting the scaling factor used in the Hampel filter
method. Default value is k_mad = 3.

A probability value from [0, 1] interval determining percentile to the percentile
method (according to probs argument in quantile() function). The default
value is set to 0.975 for the interval formed by the 2.5 and 97.5 percentiles.

Logical. Indicates, whether result table should be printed in console. Default is
TRUE.

The input data frame or database table must contain at least following columns: epoch - a col-
umn with epoch numbers/labels, time - a column with time point numbers, signal (or other name
specified in amplitude parameter) - a column with measured EEG signal values.

The outlier detection method is chosen through method argument. The possibilities are

* igr: The interquartile range criterion, values outside the interval [lower quartile - k_iqr
* IQR, upper quartile + k_iqgr * IQR] are considered as outliers. IQR denotes interquartile
range and k_iqr the scaling factor.

pick_data 25

* percentile: The percentile method, values outside the interval defined by the chosen per-
centiles are considered as outliers. Note: chosing small pleads to marking too many (or all)
values.

* hampel: The Hampel filter method, values outside the interval [median - k_mad * MAD, median
+ k_mad * MAD] are considered as outliers. MAD denotes median absolute deviation and
k_mad the scaling factor. Each of the above methods operates independently per time point,
not globally across time.

Note: For large datasets, the calculation can be time-consuming. It is recommended to pre-filter or
subset the data before using this function to reduce computation time.

Value

A list with following components:

epoch_table A data frame with epoch ID and the number of time points in which the epoch
was evaluated as outlier. (Only epochs with occurrence of outliers in at least one
time point are included.)

outliers_data A data frame with subset of data corresponding to the outliers found. (The full
record for each flagged point from epoch_table.)

With the setting print_tab = TRUE, the epoch_table is also printed to the console.

Examples

1. Outlier epoch detection for subject 2, electrode E45 for the whole time range with IQR method

epochdata |>
pick_data(subject_rg = 2, sensor_rg = "E45") |>
outliers_epoch(amplitude = "signal")

From the result table we see that epochs 14 and 15 were marked as outliers in 50 cases out of 50

2. Outlier epoch detection for both subjects, electrode E45 for the whole time range
using percentile method with 1 and 99 percentiles

outdata <- epochdata |>

pick_data(sensor_rg = "E45") |>

outliers_epoch(amplitude = "signal”, method = "percentile”, p = 0.99)

see head of outliers data

head(outdata$outliers_data)

pick_data Subsets EEG data by group, subject, sensor; time, experimental condi-
tion or epoch

Description

Filters an input dataset by optional constraints on group, subject, sensor, time, condition and epoch.
Filters are combined with logical AND, and exact value matching (%in%) is used.

26

Usage

pick_data(
data,

pick_data

group_rg = NULL,
subject_rg = NULL,
sensor_rg = NULL,
condition_rg = NULL,
epoch_rg = NULL,
time_rg = NULL

Arguments

data

group_rg

subject_rg

sensor_rg

condition_rg

epoch_rg
time_rg
Details

A data frame, tibble or database table with input data. Required columns depend
on the further parameters: setting subject_rg requires subject column etc.

Optional vector of group identifiers to keep (character or numeric, matching
data$group). If NULL (default), no filtering is applied based on group.

Optional vector of subject identifiers to keep (character or numeric, matching
data$subject). If NULL (default), no filtering is applied based on subject.

Optional vector of sensor identifiers to keep (character or numeric, matching
data$sensor). If NULL (default), no filtering is applied based on sensor.

Optional vector of experimental condition identifiers to keep (character or nu-
meric, matching data$condition). If NULL (default), no filtering is applied
based on condition.

Optional vector of epoch identifiers to keep (character or numeric, matching
data$epoch). If NULL (default), no filtering is applied based on epoch.

Optional vector of time points to keep (numeric, matching data$time). If NULL
(default), no filtering is applied based on time.

All filters are combined conjunctively (AND). Matching uses membership (%in%) with case-sensitive
comparison for character columns. On database backends, very long *_rg vectors may not translate
efficiently; consider pre-filtering or semi-joins.

Value

An object of the same class as data with rows filtered by the provided criteria; columns are un-
changed. If all filters are NULL, the input is returned unmodified. If no rows match, the function
ends with error message.

See Also

compute_mean, baseline_correction, pick_region

pick_region 27

Examples

Filtering epochs 1:5 and time points 1:10 for all subjects and sensor "E45"
data_subset <- pick_data(epochdata, sensor_rg = "E45",

time_rg = 1:10, epoch_rg = 1:5)

head(data_subset)

Setting parameters outside the input data range (there is no subject 6 in epochdata)
results in an error message
try(
pick_data(epochdata, subject_rg = 6,
time_rg = 1:10, epoch_rg = 1:5)
)

pick_region Choose region of interest

Description
The function extracts the selected regions or hemisphere (or a combination of both) from the speci-
fied sensor coordinates.

Usage

pick_region(
coords = NULL,
hemisphere = c("left”, "right"”, "midline”),

region = c("frontal”, "central”, "parietal”, "occipital”, "temporal”, "face"),
ROI = NULL,
tol = 1e-06
)
Arguments
coords A data frame, matrix or named tibble with numeric columns of "x" and "y"
sensor coordinates. If not defined, HCGSN256 template is used. See details for
more information about coordinate requirements.
hemisphere A character vector denoting hemisphere to choose. Possible values: "left"”,
"right"”, "midline” or any combination of them. If not defined, both hemi-
spheres with midline are chosen.
region A character vector denoting region to choose. Possible values: "frontal”,
"central”, "parietal”, "occipital”, "temporal”, "face"” or any combi-
nation of them. If not defined, all regions are chosen.
ROI A character or factor vector with labels of regions, aligned row-wise with coords.

If not defined, the predefined vector (according to HCGSN256 template deter-
mined by an expert from Central European Institute of Technology, Masaryk
University, Brno, Czech Republic) is used.

28 plot_point_mesh

tol A numeric value indicating tolerance for midline selection. (Values of x fulfill-
ing abs(x) < tol are denoted as midline.) Default value is 1e-6.

Details

If the coords input is data frame or matrix with no named columns, the first column is considered

nyn

as "x" coordinate and second as "y" coordinate. For the correct selection of the hemisphere with
own coordinates, it is necessary that the 2D layout is oriented with the nose up and that the midline
electrodes should have a zero x-coordinate (or approximately zero within tolerance). Otherwise,
the results will not match reality.

Notes: The option hemisphere = "left"” (respectively hemisphere = "right") means only the
left hemisphere without the midline. If you want to include midline as well, use hemisphere =
c("left”, "midline") (respectively hemisphere = c("right”, "midline")).

The matching of region/hemisphere is exact and the function will stop with an the function stops
with an error if no coordinates match the requested region and hemisphere combination.
Value

A tibble or data frame subset of coords filtered by the selected region and hemisphere criteria.

See Also

point_mesh

Examples

Choosing regions from HCGSN256 template
a) temporal region in left hemisphere

pick_region(hemisphere = "left", region = "temporal”)
b) frontal and central region
region_fc <- pick_region(region = c("frontal”, "central”))

head(region_fc)

c) left hemisphere including midline

hemi_lm <- pick_region(hemisphere = c("left"”, "midline"))
head(hemi_1m)

plot the result in ¢)

plot(hemi_lm$x, hemi_lm$y, pch = 16, asp = 1)

plot_point_mesh Plot point mesh

Description

Plots a mesh of points (typically from point_mesh, but not necessary) as either a 2D ggplot or 3D
rgl plot depending on mesh dimension.

plot_point_mesh

Usage

29

plot_point_mesh(

mesh,

sensors = TRUE,

label_sensors
sensor_select

= FALSE,
= NULL,

names_vec = NULL,

ngreenn ,

own_coordinates = NULL

col = "gray”,
cex = 0.4,
col_sensors =
Arguments
mesh
sensors

label_sensors

sensor_select

names_vec

col
cex

col_sensors
own_coordinates

Details

A data frame or tibble with cartesian coordinates of point mesh to plot. It could
be D2 or D3 element of output from point_mesh function or any data frame (or
tibble) with named x and y (x, y and z, respectively) columns. See Details for
more information.

A logical value indicating whether the sensor locations should also be plotted
(default value is TRUE).

A logical value indicating whether the sensor labels should also be plotted (de-
fault value is FALSE).

Optionally, a vector with sensor labels selected from the template during a mesh
building. It must be the same as the vector used to create the mesh that the
function is supposed to draw, otherwise the final plot will be incorrect.

A character vector of labels matching rows in own_coordinates. The argument
is required when using own_coordinates together with setting label_sensors
= TRUE, otherwise is optional.

The colour of mesh points (default colour is gray).
The cex (size) argument for points of the mesh.

The colour of sensor locations points (default colour is green).

A data frame or tibble with coordinates of the sensor locations (matching the
dimensionality of mesh and containing appropriate coordinate columns). If the
value is NULL and sensors is set to TRUE, the HCGSN256 template is used.

Please follow the instructions below when entering own_coordinates:

The output plot is designed with frontal part of the brain above and occipital part of the brain bottom.
The orientation of own_coordinates should be consistent with this. In other case the results could

be distorted.
For displaying 3D

rgl plot, the own_coordinates must contain the x, y and z coordinates of the

sensors, otherwise the function does not work correctly.

30 plot_time_mean

The order of elements in names_vec must be consistent with elements of own_coordinates.

When both names_vec and own_coordinates are provided, it is essential that the length of names_vec
matches the number of rows in own_coordinates, otherwise the names are not plotted (despite the
setting label_sensors = TRUE).

Value

A ggplot object (for 2D mesh) or plots directly to rgl 3D viewer (for 3D mesh).

See Also

point_mesh()

Examples

2D polygon point mesh with all sensors from the HCGSN256 template
and default settings

Note: for nice plot we recommend set par(mar = c(0,0,0,0))

M <- point_mesh(n = 4000, template = "HCGSN256")
plot_point_mesh(M$D2)

Note: the example opens a rgl 3D viewer

Plotting 3D polygon point mesh with default settings
rgl::open3d()

plot_point_mesh(M$D3)

Plotting 2D circle point mesh with sensors from epochdata as orange points
sensors <- unique(epochdata$sensor)

M <- point_mesh(dim = 2, n = 4000, template = "HCGSN256",

sensor_select = sensors, type = "circle")

plot_point_mesh(M$D2, sensor_select = sensors, col_sensors = "orange")

Plotting the same mesh with marking only midline electrodes

midline <- HCGSN256$D2[c(8, 15, 21, 26, 78, 86, 95, 111, 117, 127, 136, 204),]

names_vec <- HCGSN256$D2$sensor[c(8, 15, 21, 26, 78, 86, 95, 111, 117, 127, 136, 204)]
plot_point_mesh(M$D2, label_sensors = TRUE, names_vec = names_vec, own_coordinates = midline)

plot_time_mean Plot time curve of average EEG signal with confidence interval

Description

Plot a time course of the average EEG signal amplitude with pointwise confidence intervals (CIs),
colour-coded by a user-defined grouping variable such as experimental condition, subject or group.
If the condition_column is NULL, all observations are treated as a single condition.

plot_time_mean 31

Usage

plot_time_mean(
data,
condition_column = NULL,
FS = 250,
to =1,
transp = 0.4,
y_limits = NULL,
label_Oms = "stimulus”,

label_offset = c(@, 0),
legend_title = "Condition”

Arguments

data A data frame, tibble or a database table with input data to plot. It should be an
output from compute_mean function or an object with the same structure, con-
taining columns: time with labels of time points and average, ci_low, ci_up
with values of average signal and lower and upper CI bounds.

condition_column
Character string specifying the name of the column used to define conditions for
plotting. If NULL, all observations are treated as a single condition.

FS The sampling frequency. Default value is 250 Hz.

to Index of the zero time point, i.e. point, where 0 ms should be marked (most
often time of the stimulus or time of the response).

transp A numeric value between 0 and 1 controlling the transparency of the confidence
ribbon (corresponding to alpha parameter in geom_ribbon function).

y_limits A numeric vector of length two, specifying the minimum and maximum y-axis
limits. Defaults to NULLfor plot limits determined according to input data.

label_oms Character string for the annotation label at the 0ms mark. Defaultis "stimulus”.

label_offset A numeric vector of length two to offset the stimulus label. The first value
indicates a horizontal shift, the second a vertical one. Default is c(0,0) for no
shift.

legend_title Character string specifying the legend title shown in the plot. Defaultis "Condition".
For all observations treated as a single condition (condition_column = NULL)
is plotted no legend.
Details

The output in the form of a ggplot object allows to easily edit the result image properties.

Value

A ggplot object showing the time course of the average EEG signal with pointwise confidence
intervals.

32 plot_topo_mean

See Also

compute_mean, interactive version of time plot: interactive_waveforms

Examples

Plot average signal with CI bounds from the sensor E65 excluding outlier epochs (14 and 15)
for subject 2 - part b) and for the both subjects treated as conditions - part c)

a) preparing data

al) extract required data

edata <- pick_data(epochdata, sensor_rg = c("E65"), epoch_rg = 1:13)

a2) baseline correction

data_base <- baseline_correction(edata, baseline_range = 1:10)

a3) average computing

data_mean <- compute_mean(data_base, amplitude = "signal_base”, type = "point")

b) filter subject 2 and plot the average line with default settings
(the whole dataset treated as one condition, no legend plotted)
data_mean2 <- data_mean |>

dplyr::filter(subject == 2) # or use pick_data(data_mean, subject_rg
plot_time_mean(data = data_mean2, t0@ = 10)

2)

c) plot the time course by subject (treated as a condition)
plot_time_mean(data = data_mean, condition_column = "subject”, t0 = 10, legend_title = "Subject")

Plot average signal with CI bounds for subject 1 from three chosen sensors
preparing data
edata <- pick_data(epochdata, subject_rg = 1, sensor_rg = c("E5", "E35" ,"E65"),
epoch_rg = 1:13)
data_base <- baseline_correction(edata, baseline_range = 1:10)
data_mean <- compute_mean(data_base, amplitude = "signal_base”, type = "point”)
plot the time course by sensor (channel)
plot_time_mean(data = data_mean, condition_column = "sensor”, t@ = 10, legend_title = "Channel”)

plot_topo_mean Plot topographic map of average EEG signal

Description

Plot a topographic circle or polygon map of the average EEG signal amplitude and its lower and
upper confidence interval bounds using topographic colour scale. The thin-plate spline interpolation
model IM: R? — R is used for signal interpolation between the sensor locations. The output in the
form of a ggplot object allows to easily edit the result image properties.

Usage

plot_topo_mean(
data,
mesh,

plot_topo_mean

33

coords = NULL,
template = NULL,

col_range =

NULL,

col_scale = NULL,
contour = FALSE,
show_legend = TRUE,
label_sensors = FALSE

Arguments

data

mesh

coords

template

col_range

col_scale

contour

show_legend

label_sensors

Details

A data frame, tibble or a database table with input data to plot. It should be
an output from compute_mean function or an object with the same structure,
containing columns: sensor with sensor labels and average, ci_low, ci_up
with values of average signal and its lower and upper CI bounds in one time
point (or precomputed average of multiple time points).

A "mesh” object (or a named list with the same structure) containing at least D2
element with x and y coordinates of a point mesh used for computing IM model.
If not defined, the point mesh with default settings from point_mesh function
is used.

Sensor coordinates as a tibble or data frame with named x, y and sensor columns.
The sensor labels must match the labels in sensor column in data. If not de-
fined, the HCGSN256 template is used.

The kind of sensor template montage used. Currently the only available option
is "HCGSN256" denoting the 256-channel HydroCel Geodesic Sensor Net v.1.0,
which is also a default setting.

A vector with minimum and maximum value of the amplitude used in the colour
palette for plotting. If not defined, the range of input data (average and CI
bounds) is used.

Optionally, a colour scale to be utilised for plotting. It should be a list with
colors and breaks components (usually created via create_scale). If not
defined, it is computed from col_range.

Logical. Indicates, whether contours should be plotted in the graph. Default
value is FALSE.

Logical. Indicates, whether legend should be displayed below the graph. Default
value is TRUE.

A logical value indicating whether the sensor labels should also be plotted. De-
fault value is FALSE.

The spline interpolation is done independently for each CI bound and average.

Note: When specifying the coords and template at the same time, the template parameter takes
precedence and the coords parameter is ignored.

34 point_mesh

Value

A ggplot object showing the static topographic map of the signal divided into three panels: CI
lower, mean, CI upper.

See Also

topo_plot, compute_mean, animated version: animate_topo_mean

Examples

Plot average topographic map with CI bounds of signal for subject 2 from the time point 10
(the time of the stimulus) excluding outlier epochs 14 and 15

a) preparing data

al) extract required data

edata <- pick_data(epochdata, subject_rg = 2, epoch_rg = 1:13, time_rg = 1:10)
a2) baseline correction (needed for suitable topographic map)
data_base <- baseline_correction(edata, baseline_range = 1:10)

a3) average computing

data_mean <- data_base [>

dplyr::filter(time == 10) |>

compute_mean(amplitude = "signal_base”, type = "jack”, domain = "space")
a4) prepare a mesh for plotting

M <- point_mesh(dimension = 2, n = 3000, template = "HCGSN256",
sensor_select = unique(epochdata$sensor))

b) plot the topographic map with legend
plot_topo_mean(data = data_mean, mesh = M, template = "HCGSN256", show_legend = TRUE)

point_mesh Create regular mesh of points

Description

Function creates an object of class "mesh”, which is a list of data frames with coordinates of a
regular (in the sense of the equidistant distance between mesh nodes) mesh of points on the space
defined by sensor coordinates. Circular or polygonal shape of the result mesh is available. For the
equivalence between 2D and 3D mesh and the possibility to compare models in different dimen-
sions, the thin-plate spline interpolation model R? — R? is used for creating 3D mesh.

Usage

point_mesh(
dimension = c(2, 3),
n = 10000,
r,
template = NULL,
sensor_select = NULL,

point_mesh 35

own_coordinates = NULL,
type = "polygon”

)
Arguments

dimension A number (or a vector) indicating a dimension of the mesh: 2 for two dimen-
sional, 3 for three dimensional mesh and c(2, 3) for both of them in one output
(default setting).

n Optionally, the required number of mesh points. Default setting is n = 10 000.

r Optionally, desired radius of a circular mesh. If not defined, it is computed from
the convex hull of sensor locations, based on maximum Euclidean distance from
centroid.

template A character denoting sensor template montage used. Currently the only avail-
able option is "HCGSN256" denoting the 256-channel HydroCel Geodesic Sensor
Net v.1.0.

sensor_select Optionally, a vector with sensor labels to select from the template. If not defined,
all sensors from the template montage are used to create a mesh.
own_coordinates
Optionally, a list with own sensor coordinates for mesh building. See Details for
more information.

type A character indicating the shape of the mesh with 2 possible values: “circle”
for circular mesh, "polygon” for irregular polygon shape with boundaries de-
fined by sensor locations (default).

Details

If neither template nor own_coordinates is specified, "HCGSN256" template is used to create the
mesh.

In the case of using Geodesic Sensor Net (template = '"HCGSN256"), the (0,0) point of the resulting
2D mesh corresponds to a reference electrode located at the vertex.

The number n for controlling the mesh density is only an approximate value. The final number
of mesh nodes depends on the exact shape of the polygon (created as a convex hull of the sensor
locations), and is only close to, not exactly equal to, the number n.

The own_coordinates enables computing a mesh from user’s own sensor locations. The input
must be a list containing following elements:

¢ D2 atibble or data frame with sensor coordinates in named x and y columns,

* D3 atibble or data frame with sensor coordinates in named x, y and z columns.
To build the appropriate meshes in both dimensions, it is necessary to have the input of 3D sensor
locations and their corresponding projection onto a plane; the function itself does not perform this

projection. It is also necessary to keep the same sensor locations order in D2 and D3 part of the
coordinates.

Note: When specifying the own_coordinates and template at the same time, the template pa-
rameter takes precedence and the own_coordinates parameter is ignored.

36 rtdata

Value

Returns a list of class "mesh” containing some (or all) of the following components:

D2 A data frame with x and y coordinates of the created two dimensional point
mesh.

D3 A data frame with x, y and z coordinates of the created three dimensional point
mesh.

template A character indicating the template of the sensor coordinates used for mesh com-
puting.

r A radius of the circle used for mesh creating.

References

EGI Geodesic Sensor Net Technical Manual (2024)

Examples

Computing circle 2D mesh with starting number 4000 points for HCGSN256 template
using all electrodes
M <- point_mesh(dimension = 2, n = 4000, template = "HCGSN256", type = "circle")

Computing polygon 3D mesh with starting number 2000 points and own coordinates
Note: the coordinates are the same as for HCGSN256 template, it is

just a mod example of using the own_coordinates parameter

M <- point_mesh(dimension = 3, n = 2000, own_coordinates = HCGSN256)

Computing coordinates of a polygon mesh in 2D and 3D in one step (starting number 3000 points),
using 204 electrodes selected for epochdata

a) create vector with selected sensor labels

sensors <- unique(epochdata$sensor)

b) create a mesh for selected sensors using sensor_select parameter

M <- point_mesh(n = 3000, template = "HCGSN256", sensor_select = sensors)

rtdata Example response time data

Description

This dataset is a short slice of a high-density (HD-EEG) dataset from a study investigating the
impact of deep brain stimulation on patients with advanced Parkinson’s disease (Madetko-Alster,
2025). The data contains response times (time between stimulus presentation and pressing the
button) from the experiment involving a simple visual-motor task. The study was carried out by
Central European Institute of Technology in Brno and was supported by Czech Health Research
Council AZV NU21-04-00445.

Example dataset contains response time values in individual experiment epochs for 2 representative
subjects (one patient and one healthy control subject).

scalp_plot 37

Usage

data("rtdata")

Format

The data frame consists of 29 rows (14 for subject 1, 15 for subject 2) and three columns:

subject Factor variable with subject ID, 1 - representative healthy control subject, 2 - representative
patient subject.

epoch Factor variable with epoch number (14 epochs for subject 1, 15 epochs for subject 2).

RT Response time in milliseconds.

Details

The epochs and subjects correspond to the sample dataset epochdata.

Source

Central European Institute of Technology, Masaryk University, Brno, Czech Republic.

References

Madetko-Alster N., Alster P, Lamo§ M., Smahovska L., Bousek T., Rektor I. and Botkova M.
The role of the somatosensory cortex in self-paced movement impairment in Parkinson’s disease.
Clinical Neurophysiology. 2025, vol. 171, 11-17.

Examples

Data preview
head(rtdata)

scalp_plot Plot scalp map of EEG signal

Description

Plot a scalp polygon map of the EEG signal amplitude using topographic colour scale. The thin-
plate spline interpolation model IM: R?® — TR is used for signal interpolation between the sensor
locations. The shape3d function is used for plotting.

The function assumes that the input data have already been filtered to the desired subset (e.g., group,
subject, time point).

38

Usage

scalp_plot(

data,

amplitude,

mesh,

tri = NULL,

NULL,
NULL,
NULL,
NULL,

coords

template
col_range
col_scale

view

Arguments

data

amplitude

mesh

tri

coords

template

col_range

col_scale

view

scalp_plot

A data frame, tibble or a database table with input data to plot with at least two
columns: sensor with sensor labels and the column with the EEG amplitude
specified in the argument amplitude.

A character specifying the name of the column from input data with EEG am-
plitude values.

An object of class "mesh” (or a named list with the same structure) used for
computing IM model. If not defined, the polygon point mesh with default set-
tings from point_mesh function is used. See details for more information about
the structure.

A three column matrix with indices of the vertices of the triangles. Each row
represents one triangle, defined by three vertex indices. If missing, the triangu-
lation is computed using make_triangulation function from D2 element of the
mesh.

Sensor coordinates as a tibble or data frame with named x, y, z and sensor
columns. The sensor labels must match the labels in sensor column in data. If
not defined, the HCGSN256 template is used.

The kind of sensor template montage used. Currently the only available option
is "HCGSN256" denoting the 256-channel HydroCel Geodesic Sensor Net v.1.0,
which is also a default setting.

A vector with minimum and maximum value of the amplitude used in the colour
palette for plotting. If not defined, the range of interpolated signal is used.

Optionally, a colour scale to use for plotting. If not defined, it is computed from
col_range.

A character for creating a temporary rotated scene (according to neurological
terminology). Possible values are: "superior”, "anterior”, "posterior”,
"left"”, "right". If missing, the default view according to user settings is dis-
played. Note: Input coordinates corresponding to the positions in the HCGSN
template are required to obtain an appropriate view.

scalp_plot 39

Details

The parameter mesh should optimally be a "mesh"” object (output from point_mesh function) or a
list with the same structure: D2 data frame with x and y columns and D3 data frame with x, y and z
columns. See point_mesh for more information. In that case, setting the argument tri is optional,
and if it is absent, a triangulation based on the D2 element of the mesh is calculated and used in
the plot. If the input mesh contains only 3D coordinates of a point mesh in D3 element, the use of
previously created triangulation (through tri argument) is necessary. To compare results between
2D topographical plot and 3D scalp plot use the same mesh in both cases.

Be careful when choosing the argument col_range. If the amplitude in input data contains values
outside the chosen range, this will cause "holes" in the resulting plot. To compare results for differ-
ent subjects or conditions, set the same values of col_range and col_scale arguments in all cases.
The default used scale is based on topographical colours with zero value always at the border of
blue and green shades.

Notes: This function focuses on visualization and does not perform any data subsetting. Users are
expected to filter the data beforehand using standard dplyr verbs or pick_data function.

For correct rendering of a plot, the function requires an openGL-capable device. Displaying the
rotated scalp map using the view argument requires previous call open3d(). When specifying the
coords and template at the same time, the template parameter takes precedence and the coords
parameter is ignored.

Value

A 3D scalp map rendered via rgl: : shade3d() in an interactive window.

See Also

point_mesh, make_triangulation, create_scale, animated version: animate_scalp

Examples

Note: The example opens a rgl 3D viewer.
Plot average scalp map of signal for subject 2 from the time point 10 (the time of the stimulus)
the outliers (epoch 14 and 15) are extracted before computing

a) preparing data

edata <- pick_data(epochdata, subject_rg = 2, epoch_rg = 1:13, time_rg = 1:10)
a2) baseline correction (needed for suitable topographic map)

data_base <- baseline_correction(edata, baseline_range = 1:10)

a3) average computing

data_mean <- data_base [>

dplyr::filter(time == 10) |>

compute_mean(amplitude = "signal_base”, type = "point”, domain = "space")

b) plotting the scalp polygon map
scalp_plot(data_mean, amplitude = "average", col_range = c(-30, 15))

40 summary_stats_rt

summary_stats_rt Compute summary statistics of reaction times

Description

Calculates basic descriptive statistics of reaction time (RT). Statistics are computed separately for
each combination of grouping variables present in the data (e.g., group, subject, condition).

Computed statistics include: the number of epochs, minimum, maximum, median, mean, and stan-
dard deviation of RT.

Usage

summary_stats_rt(data)

Arguments
data A data frame or a database table with reaction times dataset. Required columns
are epoch and RT (value of reaction time in ms). Optional columns: group,
subject, condition for computing summary statistics per group/subject/condition.
Value

A tibble with summary statistics of reaction times consisting of the following columns:

group Group identifier (only if present in the input data).

subject Subject identifier (only if present in the input data).
condition Experimental condition (only if present in the input data).
n_epoch Number of epochs.

min_rt Minimum reaction time.

max_rt Maximum reaction time.

median_rt Median reaction time.

avg_rt Mean reaction time.

sd_rt Standard deviation of reaction time.

Examples

1. Summary statistics for rtdata
two different subjects, no group or conditions - results are computed per subject
summary_stats_rt(rtdata)

2. Summary statistics for data with conditions

a) create example data

data_cond <- rtdata

data_cond$condition <- c(rep(”a", 7), rep("b", 7), rep("a", 8), rep("b",7))
b) compute statistics per subject and condition
summary_stats_rt(data_cond)

topo_plot

41

c) compute statistics per conditions regardless of subjects
exclude "subject” column from computing
summary_stats_rt(data_cond[,-11)

topo_plot

Plot topographic map of EEG signal

Description

Plot a topographic circle or polygon map of the EEG signal amplitude using topographic colour
scale. The thin-plate spline interpolation model IM: R? — R is used for signal interpolation
between the sensor locations. The output in the form of a ggplot object allows to easily edit the
result image properties.

The function assumes that the input data have already been filtered to the desired subset (e.g., group,
subject, time point).

Usage

topo_plot(

data,

amplitude,

mesh,
coords

template
col_range
col_scale

NULL,

NULL,
NULL,
NULL,

contour = FALSE,
show_legend = TRUE,
label_sensors = FALSE

Arguments

data

amplitude
mesh

coords

template

A data frame, tibble or a database table with input data to plot with at least two
columns: sensor with sensor labels and the column with the EEG amplitude
specified in the argument amplitude.

A character string naming the column with EEG amplitude values.

A "mesh” object (or a named list with the same structure) containing at least D2
element with x and y coordinates of a point mesh used for computing IM model.
If not defined, the point mesh with default settings from point_mesh function
is used.

Sensor coordinates as a tibble or data frame with named x, y and sensor columns.
The sensor labels must match the labels in sensor column in data. If not de-
fined, the HCGSN256 template is used.

The kind of sensor template montage used. Currently the only available option
is "HCGSN256" denoting the 256-channel HydroCel Geodesic Sensor Net v.1.0,
which is also a default setting.

42

col_range

col_scale

contour

show_legend

label_sensors

Details

topo_plot

A vector with minimum and maximum value of the amplitude used in the colour
palette for plotting. If not defined, the range of interpolated signal is used.

Optionally, a colour scale to be utilised for plotting. It should be a list with
colors and breaks components (usually created via create_scale). If not
defined, it is computed from col_range.

Logical. Indicates, whether contours should be plotted in the graph. Default
value is FALSE.

Logical. Indicates, whether legend should be displayed beside the graph. De-
fault value is TRUE.

A logical value indicating whether the sensor labels should also be plotted. De-
fault value is FALSE.

For more details about required mesh structure see point_mesh function. If the input mesh structure
does not match this format, an error or incorrect function behavior may occur.

Be careful when choosing the argument col_range. If the amplitude in input data contains values
outside the chosen range, this will cause "holes" in the resulting plot. To compare results for differ-
ent subjects or conditions, set the same values of col_range and col_scale arguments in all cases.
The default used scale is based on topographical colours with zero value always at the border of
blue and green shades.

Notes: When specifying the coords and template at the same time, the template parameter takes
precedence and the coords parameter is ignored.

This function focuses on visualization and does not perform any data subsetting. Users are expected
to filter the data beforehand using standard dplyr verbs or pick_data function.

Value

A ggplot object showing an interpolated topographic map of EEG amplitude.

See Also

point_mesh, animated version: animate_topo, average topo map: plot_topo_mean

Examples

Plot average topographic map of signal for subject 2 from the time point 10
(the time of the stimulus) without the outliers (epoch 14 and 15)

a) preparing data

al) extract required data

edata <- pick_data(epochdata, subject_rg = 2, epoch_rg = 1:13, time_rg = 1:10)
a2) baseline correction (needed for suitable topographic map)

data_base <- baseline_correction(edata, baseline_range = 1:10)

a3) average computing

data_mean <- data_base |>

dplyr::filter(time == 10) |>

compute_mean(amplitude = "signal_base"”, type = "jack”, domain = "space")

topo_plot

b) plotting the topographic map with contours and legend

interval (-30,15) is selected in consideration of the signal progress
topo_plot(data = data_mean, amplitude = "average", template = "HCGSN256",
col_range = c(-30, 15), contour = TRUE)

c) plotting the same map without contours but with sensor labels
topo_plot(data = data_mean, amplitude = "average"”, template = "HCGSN256",
col_range = c(-30, 15), label_sensors = TRUE)

43

Index

x dataset scale_fill_gradientn, 17
epochdata, 18 scalp_plot, 3, 4, 37
HCGSN256, 19 shape3d, 37
rtdata, 36 summary_stats_rt, 40

animate_scalp, 2, 6, 39 topo_plot, 6, 34, 41

animate_topo, 4, 4, 8, 42
animate_topo_mean, 6, 34

baseline_correction, 8, 8, 26
boxplot_epoch, 10, 13
boxplot_rt, 11
boxplot_subject, 11, 12

compute_mean, 7, 8, 13, 21, 26, 31-34
create_scale, 16, 33, 39, 42

epochdata, 18, 37

geom_ribbon, 31/
gganimate::animate, 5, 8

HCGSN256, 19
interactive_waveforms, 20, 32
make_triangulation, 3, 22, 38, 39
outliers_epoch, 23

pick_data, 25, 39, 42

pick_region, 26, 27

plot_point_mesh, 28

plot_time_mean, 30

plot_topo_mean, 8, 32, 42

plotly, 20

point_mesh, 3, 5-7, 22, 28, 29, 33, 34, 38, 39,
41, 42

point_mesh(), 30

rtdata, 36

44

	animate_scalp
	animate_topo
	animate_topo_mean
	baseline_correction
	boxplot_epoch
	boxplot_rt
	boxplot_subject
	compute_mean
	create_scale
	epochdata
	HCGSN256
	interactive_waveforms
	make_triangulation
	outliers_epoch
	pick_data
	pick_region
	plot_point_mesh
	plot_time_mean
	plot_topo_mean
	point_mesh
	rtdata
	scalp_plot
	summary_stats_rt
	topo_plot
	Index

