
Package ‘LSX’
May 23, 2025

Type Package

Title Semi-Supervised Algorithm for Document Scaling

Version 1.4.4

Description A word embeddings-based semi-supervised model for document scaling Watan-
abe (2020) <doi:10.1080/19312458.2020.1832976>.
LSS allows users to analyze large and complex corpora on arbitrary dimen-
sions with seed words exploiting efficiency of word embeddings (SVD, Glove).
It can generate word vectors on a users-provided corpus or incorporate a pre-trained word vectors.

License GPL-3

LazyData TRUE

Encoding UTF-8

Depends R (>= 3.5.0)

Imports methods, quanteda (>= 2.0), quanteda.textstats, stringi,
digest, Matrix, RSpectra, proxyC, stats, ggplot2, ggrepel,
reshape2, locfit

Suggests testthat, spelling, knitr, rmarkdown, wordvector, irlba,
rsvd, rsparse

RoxygenNote 7.3.2

BugReports https://github.com/koheiw/LSX/issues

URL https://koheiw.github.io/LSX/

Language en-US

NeedsCompilation no

Author Kohei Watanabe [aut, cre, cph]

Maintainer Kohei Watanabe <watanabe.kohei@gmail.com>

Repository CRAN

Date/Publication 2025-05-23 09:02:06 UTC

1

https://doi.org/10.1080/19312458.2020.1832976
https://github.com/koheiw/LSX/issues
https://koheiw.github.io/LSX/

2 as.seedwords

Contents

as.seedwords . 2
as.textmodel_lss . 3
bootstrap_lss . 3
coef.textmodel_lss . 4
data_dictionary_ideology . 5
data_dictionary_sentiment . 5
data_textmodel_lss_russianprotests . 6
optimize_lss . 6
predict.textmodel_lss . 7
seedwords . 8
smooth_lss . 9
textmodel_lss . 10
textplot_simil . 12
textplot_terms . 12
textstat_context . 13

Index 15

as.seedwords Convert a list or a dictionary to seed words

Description

Convert a list or a dictionary to seed words

Usage

as.seedwords(x, upper = 1, lower = 2, concatenator = "_")

Arguments

x a list of characters vectors or a dictionary object.

upper numeric index or key for seed words for higher scores.

lower numeric index or key for seed words for lower scores.

concatenator character to replace separators of multi-word seed words.

Value

named numeric vector for seed words with polarity scores

as.textmodel_lss 3

as.textmodel_lss Create a Latent Semantic Scaling model from various objects

Description

Create a new textmodel_lss object from an existing or foreign objects.

Usage

as.textmodel_lss(x, ...)

Arguments

x an object from which a new textmodel_lss object is created. See details.

... arguments used to create a new object. seeds must be given when x is a dense
matrix or a fitted textmodel_lss.

Details

If x is a textmodel_lss, original word vectors are reused to compute polarity scores with new seed
words. It is also possible to subset word vectors via slice if it was trained originally using SVD.

If x is a dense matrix, it is treated as a column-oriented word vectors with which polarity of words
are computed. If x is a named numeric vector, the values are treated as polarity scores of the words
in the names.

If x is a normalized wordvector::textmodel_word2vec, it returns a spatial model; if not normalized,
a probabilistic model. While the polarity scores of words are their cosine similarity to seed words
in spatial models, they are predicted probability that the seed words to occur in their proximity.

Value

a dummy textmodel_lss object

bootstrap_lss [experimental] Compute polarity scores with different hyper-
parameters

Description

A function to compute polarity scores of words and documents by resampling hyper-parameters
from a fitted LSS model.

4 coef.textmodel_lss

Usage

bootstrap_lss(
x,
what = c("seeds", "k"),
mode = c("terms", "coef", "predict"),
remove = FALSE,
from = 100,
to = NULL,
by = 50,
verbose = FALSE,
...

)

Arguments

x a fitted textmodel_lss object.
what choose the hyper-parameter to resample in bootstrapping.
mode choose the type of the result of bootstrapping. If coef, returns the polarity scores

of words; if terms, returns words sorted by the polarity scores in descending
order; if predict, returns the polarity scores of documents.

remove if TRUE, remove each seed word when what = "seeds".
from, to, by passed to seq() to generate values for k; only used when what = "k".
verbose show messages if TRUE.
... additional arguments passed to as.textmodel_lss() and predict().

Details

bootstrap_lss() creates LSS fitted textmodel_lss objects internally by resampling hyper-parameters
and computes polarity of words or documents. The resulting matrix can be used to asses the validity
and the reliability of seeds or k.

Note that the objects created by as.textmodel_lss() does not contain data, users must pass
newdata via ... when mode = "predict".

coef.textmodel_lss Extract model coefficients from a fitted textmodel_lss object

Description

coef() extract model coefficients from a fitted textmodel_lss object. coefficients() is an
alias.

Usage

S3 method for class 'textmodel_lss'
coef(object, ...)

coefficients.textmodel_lss(object, ...)

data_dictionary_ideology 5

Arguments

object a fitted textmodel_lss object.

... not used.

data_dictionary_ideology

Seed words for analysis of left-right political ideology

Description

Seed words for analysis of left-right political ideology

Examples

as.seedwords(data_dictionary_ideology)

data_dictionary_sentiment

Seed words for analysis of positive-negative sentiment

Description

Seed words for analysis of positive-negative sentiment

References

Turney, P. D., & Littman, M. L. (2003). Measuring Praise and Criticism: Inference of Semantic
Orientation from Association. ACM Trans. Inf. Syst., 21(4), 315–346. doi:10.1145/944012.944013

Examples

as.seedwords(data_dictionary_sentiment)

https://doi.org/10.1145/944012.944013

6 optimize_lss

data_textmodel_lss_russianprotests

A fitted LSS model on street protest in Russia

Description

This model was trained on a Russian media corpus (newspapers, TV transcripts and newswires) to
analyze framing of street protests. The scale is protests as "freedom of expression" (high) vs "social
disorder" (low). Although some slots are missing in this object (because the model was imported
from the original Python implementation), it allows you to scale texts using predict.

References

Lankina, Tomila, and Kohei Watanabe. “’Russian Spring’ or ’Spring Betrayal’? The Media as a
Mirror of Putin’s Evolving Strategy in Ukraine.” Europe-Asia Studies 69, no. 10 (2017): 1526–56.
doi:10.1080/09668136.2017.1397603.

optimize_lss [experimental] Compute variance ratios with different hyper-
parameters

Description

[experimental] Compute variance ratios with different hyper-parameters

Usage

optimize_lss(x, ...)

Arguments

x a fitted textmodel_lss object.

... additional arguments passed to bootstrap_lss.

Details

optimize_lss() computes variance ratios with different values of hyper-parameters using boot-
strap_lss. The variance ration v is defined as

v = σ2
documents/σ

2
words.

It maximizes when the model best distinguishes between the documents on the latent scale.

https://doi.org/10.1080/09668136.2017.1397603

predict.textmodel_lss 7

Examples

Not run:
the unit of analysis is not sentences
dfmt_grp <- dfm_group(dfmt)

choose best k
v1 <- optimize_lss(lss, what = "k", from = 50,

newdata = dfmt_grp, verbose = TRUE)
plot(names(v1), v1)

find bad seed words
v2 <- optimize_lss(lss, what = "seeds", remove = TRUE,

newdata = dfmt_grp, verbose = TRUE)
barplot(v2, las = 2)

End(Not run)

predict.textmodel_lss Prediction method for textmodel_lss

Description

Prediction method for textmodel_lss

Usage

S3 method for class 'textmodel_lss'
predict(
object,
newdata = NULL,
se_fit = FALSE,
density = FALSE,
rescale = TRUE,
cut = NULL,
min_n = 0L,
...

)

Arguments

object a fitted LSS textmodel.

newdata a dfm on which prediction should be made.

se_fit if TRUE, returns standard error of document scores.

density if TRUE, returns frequency of polarity words in documents.

rescale if TRUE, normalizes polarity scores using scale().

8 seedwords

cut a vector of one or two percentile values to dichotomized polarty scores of words.
When two values are given, words between them receive zero polarity.

min_n set the minimum number of polarity words in documents.

... not used

Details

Polarity scores of documents are the means of polarity scores of words weighted by their frequency.
When se_fit = TRUE, this function returns the weighted means, their standard errors, and the num-
ber of polarity words in the documents. When rescale = TRUE, it converts the raw polarity scores
to z sores for easier interpretation. When rescale = FALSE and cut is used, polarity scores of
documents are bounded by [-1.0, 1.0].

Documents tend to receive extreme polarity scores when they have only few polarity words. This
is problematic when LSS is applied to short documents (e.g. social media posts) or individual
sentences, but users can alleviate this problem by adding zero polarity words to short documents
using min_n. This setting does not affect empty documents.

seedwords Seed words for Latent Semantic Analysis

Description

Seed words for Latent Semantic Analysis

Usage

seedwords(type)

Arguments

type type of seed words currently only for sentiment (sentiment) or political ideol-
ogy (ideology).

References

Turney, P. D., & Littman, M. L. (2003). Measuring Praise and Criticism: Inference of Semantic
Orientation from Association. ACM Trans. Inf. Syst., 21(4), 315–346. doi:10.1145/944012.944013

Examples

seedwords('sentiment')

https://doi.org/10.1145/944012.944013

smooth_lss 9

smooth_lss Smooth predicted polarity scores

Description

Smooth predicted polarity scores by local polynomial regression.

Usage

smooth_lss(
x,
lss_var = "fit",
date_var = "date",
span = 0.1,
group = NULL,
from = NULL,
to = NULL,
by = "day",
engine = c("loess", "locfit"),
...

)

Arguments

x a data.frame containing polarity scores and dates.

lss_var the name of the column in x for polarity scores.

date_var the name of the column in x for dates.

span the level of smoothing.

group the name of the column in x to smooth the data by group.

from, to, by the the range and the internal of the smoothed scores; passed to seq.Date.

engine specifies the function to be used for smoothing.

... additional arguments passed to the smoothing function.

Details

Smoothing is performed using stats::loess() or locfit::locfit(). When the x has more than
10000 rows, it is usually better to choose the latter by setting engine = "locfit". In this case,
span is passed to locfit::lp(nn = span).

10 textmodel_lss

textmodel_lss Fit a Latent Semantic Scaling model

Description

Latent Semantic Scaling (LSS) is a word embedding-based semisupervised algorithm for document
scaling.

Usage

textmodel_lss(x, ...)

S3 method for class 'dfm'
textmodel_lss(
x,
seeds,
terms = NULL,
k = 300,
slice = NULL,
weight = "count",
cache = FALSE,
simil_method = "cosine",
engine = c("RSpectra", "irlba", "rsvd"),
auto_weight = FALSE,
include_data = FALSE,
group_data = FALSE,
verbose = FALSE,
...

)

S3 method for class 'fcm'
textmodel_lss(
x,
seeds,
terms = NULL,
w = 50,
max_count = 10,
weight = "count",
cache = FALSE,
simil_method = "cosine",
engine = c("rsparse"),
auto_weight = FALSE,
verbose = FALSE,
...

)

textmodel_lss 11

Arguments

x a dfm or fcm created by quanteda::dfm() or quanteda::fcm()

... additional arguments passed to the underlying engine.

seeds a character vector or named numeric vector that contains seed words. If seed
words contain "*", they are interpreted as glob patterns. See quanteda::valuetype.

terms a character vector or named numeric vector that specify words for which polar-
ity scores will be computed; if a numeric vector, words’ polarity scores will be
weighted accordingly; if NULL, all the features of quanteda::dfm() or quanteda::fcm()
will be used.

k the number of singular values requested to the SVD engine. Only used when x
is a dfm.

slice a number or indices of the components of word vectors used to compute simi-
larity; slice < k to further truncate word vectors; useful for diagnosys and sim-
ulation.

weight weighting scheme passed to quanteda::dfm_weight(). Ignored when engine
is "rsparse".

cache if TRUE, save result of SVD for next execution with identical x and settings. Use
the base::options(lss_cache_dir) to change the location cache files to be
save.

simil_method specifies method to compute similarity between features. The value is passed to
quanteda.textstats::textstat_simil(), "cosine" is used otherwise.

engine select the engine to factorize x to generate word vectors. Choose from RSpectra::svds(),
irlba::irlba(), rsvd::rsvd(), and rsparse::GloVe().

auto_weight automatically determine weights to approximate the polarity of terms to seed
words. Deprecated.

include_data if TRUE, fitted model includes the dfm supplied as x.

group_data if TRUE, apply dfm_group(x) before saving the dfm.

verbose show messages if TRUE.

w the size of word vectors. Used only when x is a fcm.

max_count passed to x_max in rsparse::GloVe$new() where cooccurrence counts are
ceiled to this threshold. It should be changed according to the size of the corpus.
Used only when x is a fcm.

Details

Latent Semantic Scaling (LSS) is a semisupervised document scaling method. textmodel_lss()
constructs word vectors from use-provided documents (x) and weights words (terms) based on
their semantic proximity to seed words (seeds). Seed words are any known polarity words (e.g.
sentiment words) that users should manually choose. The required number of seed words are usually
5 to 10 for each end of the scale.

If seeds is a named numeric vector with positive and negative values, a bipolar LSS model is
construct; if seeds is a character vector, a unipolar LSS model. Usually bipolar models perform
better in document scaling because both ends of the scale are defined by the user.

12 textplot_terms

A seed word’s polarity score computed by textmodel_lss() tends to diverge from its original score
given by the user because it’s score is affected not only by its original score but also by the original
scores of all other seed words. If auto_weight = TRUE, the original scores are weighted automat-
ically using stats::optim() to minimize the squared difference between seed words’ computed
and original scores. Weighted scores are saved in seed_weighted in the object.

Please visit the package website for examples.

References

Watanabe, Kohei. 2020. "Latent Semantic Scaling: A Semisupervised Text Analysis Technique for
New Domains and Languages", Communication Methods and Measures. doi:10.1080/19312458.2020.1832976.

Watanabe, Kohei. 2017. "Measuring News Bias: Russia’s Official News Agency ITAR-TASS’ Cov-
erage of the Ukraine Crisis" European Journal of Communication. doi:10.1177/0267323117695735.

textplot_simil Plot similarity between seed words

Description

Plot similarity between seed words

Usage

textplot_simil(x)

Arguments

x fitted textmodel_lss object.

textplot_terms Plot polarity scores of words

Description

Plot polarity scores of words

Usage

textplot_terms(
x,
highlighted = NULL,
max_highlighted = 50,
max_words = 1000,
sampling = c("absolute", "relative"),
...

)

https://koheiw.github.io/LSX/
https://doi.org/10.1080/19312458.2020.1832976
https://doi.org/10.1177/0267323117695735

textstat_context 13

Arguments

x a fitted textmodel_lss object.

highlighted quanteda::pattern to select words to highlight. If a quanteda::dictionary is passed,
words in the top-level categories are highlighted in different colors.

max_highlighted

the maximum number of words to highlight. When highlighted = NULL, words
are randomly sampled proportionally to beta ^ 2 * log(frequency) for high-
lighting.

max_words the maximum number of words to plot. Words are randomly sampled to keep
the number below the limit.

sampling if "relative", words are sampled based on their squared deviation from the mean
for highlighting; if "absolute", they are sampled based on the squared distance
from zero.

... passed to underlying functions. See the Details.

Details

Users can customize the plots through ..., which is passed to ggplot2::geom_text() and ggrepel::geom_text_repel().
The colors are specified internally but users can override the settings by appending ggplot2::scale_colour_manual()
or ggplot2::scale_colour_brewer(). The legend title can also be modified using ggplot2::labs().

textstat_context Identify context words

Description

Identify context words using user-provided patterns.

Usage

textstat_context(
x,
pattern,
valuetype = c("glob", "regex", "fixed"),
case_insensitive = TRUE,
window = 10,
min_count = 10,
remove_pattern = TRUE,
n = 1,
skip = 0,
...

)

char_context(
x,

14 textstat_context

pattern,
valuetype = c("glob", "regex", "fixed"),
case_insensitive = TRUE,
window = 10,
min_count = 10,
remove_pattern = TRUE,
p = 0.001,
n = 1,
skip = 0

)

Arguments

x a tokens object created by quanteda::tokens().

pattern quanteda::pattern() to specify target words.

valuetype the type of pattern matching: "glob" for "glob"-style wildcard expressions;
"regex" for regular expressions; or "fixed" for exact matching. See quanteda::valuetype()
for details.

case_insensitive

if TRUE, ignore case when matching.

window size of window for collocation analysis.

min_count minimum frequency of words within the window to be considered as colloca-
tions.

remove_pattern if TRUE, keywords do not contain target words.

n integer vector specifying the number of elements to be concatenated in each
n-gram. Each element of this vector will define a n in the n-gram(s) that are
produced.

skip integer vector specifying the adjacency skip size for tokens forming the n-grams,
default is 0 for only immediately neighbouring words. For skipgrams, skip can
be a vector of integers, as the "classic" approach to forming skip-grams is to set
skip = k where k is the distance for which k or fewer skips are used to construct
the n-gram. Thus a "4-skip-n-gram" defined as skip = 0:4 produces results that
include 4 skips, 3 skips, 2 skips, 1 skip, and 0 skips (where 0 skips are typical
n-grams formed from adjacent words). See Guthrie et al (2006).

... additional arguments passed to quanteda.textstats::textstat_keyness().

p threshold for statistical significance of collocations.

See Also

quanteda.textstats::textstat_keyness()

Index

∗ data
data_textmodel_lss_russianprotests,

6

as.seedwords, 2
as.textmodel_lss, 3
as.textmodel_lss(), 4

bootstrap_lss, 3, 6

char_context (textstat_context), 13
coef.textmodel_lss, 4
coefficients.textmodel_lss

(coef.textmodel_lss), 4

data.frame, 9
data_dictionary_ideology, 5
data_dictionary_sentiment, 5
data_textmodel_lss_russianprotests, 6
dictionary, 2

ggplot2::geom_text(), 13
ggplot2::labs(), 13
ggplot2::scale_colour_brewer(), 13
ggplot2::scale_colour_manual(), 13
ggrepel::geom_text_repel(), 13

irlba::irlba(), 11

locfit::locfit(), 9

optimize_lss, 6

predict(), 4
predict.textmodel_lss, 7

quanteda.textstats::textstat_keyness(),
14

quanteda.textstats::textstat_simil(),
11

quanteda::dfm(), 11

quanteda::dfm_weight(), 11
quanteda::dictionary, 13
quanteda::fcm(), 11
quanteda::pattern, 13
quanteda::pattern(), 14
quanteda::tokens(), 14
quanteda::valuetype, 11
quanteda::valuetype(), 14

rsparse::GloVe(), 11
RSpectra::svds(), 11
rsvd::rsvd(), 11

seedwords, 8
seq.Date, 9
smooth_lss, 9
stats::loess(), 9
stats::optim(), 12

textmodel_lss, 3, 5, 10
textplot_simil, 12
textplot_terms, 12
textstat_context, 13

wordvector::textmodel_word2vec, 3

15

	as.seedwords
	as.textmodel_lss
	bootstrap_lss
	coef.textmodel_lss
	data_dictionary_ideology
	data_dictionary_sentiment
	data_textmodel_lss_russianprotests
	optimize_lss
	predict.textmodel_lss
	seedwords
	smooth_lss
	textmodel_lss
	textplot_simil
	textplot_terms
	textstat_context
	Index

