Package ‘BioGSP’

February 2, 2026

Type Package
Title Biological Graph Signal Processing for Spatial Data Analysis
Version 1.0.0

Description Implementation of Graph Signal Processing (GSP) methods including Spectral
Graph Wavelet Transform (SGWT) for analyzing spatial patterns in biological data.
Based on Hammond, Vandergheynst, and Gribon-
val (2011) <doi:10.1016/j.acha.2010.04.005>. Provides tools for multi-scale analysis of biol-
ogy spatial signals, including forward and inverse transforms, energy analysis, and visualiza-
tion functions tailored for biological applications. Biological application exam-
ple is on Stephanie, Yao, Yuzhou (2024) <doi:10.1101/2024.12.20.629650>.

License GPL-3
URL https://github.com/BMEngineeR/BioGSP

BugReports https://github.com/BMEngineeR/BioGSP/issues
Encoding UTF-8
RoxygenNote 7.3.2

Imports Matrix, igraph, RANN, RSpectra, ggplot2, patchwork, gridExtra,
viridis, methods, dplyr

Suggests knitr, rmarkdown, ggrepel

VignetteBuilder knitr

Depends R (>=3.5.0)

NeedsCompilation no

Author Yuzhou Chang [aut, cre]

Maintainer Yuzhou Chang <yuzhou.chang@osumc.edu>
Repository CRAN

Date/Publication 2026-02-02 10:30:08 UTC

https://doi.org/10.1016/j.acha.2010.04.005
https://doi.org/10.1101/2024.12.20.629650
https://github.com/BMEngineeR/BioGSP
https://github.com/BMEngineeR/BioGSP/issues

2 Contents

Contents
BioGSP-package 3
cal_laplacian 4
checkKband e e 5
codex_toy_data 6
compare_kernel families L oL 9
compute_sgwt_filters L L e 10
cosine_similarity e e e 10
demo_sgwt L e e 11
FastDecompositionLap 12
find_knee_point 13
0 13
hello_sgwt e e 14
0 & P 14
INitSGWT e e e 15
Plot_FM . . e 16
plot_sgwt_decomposition 17
print. SGWT o e 17
runSGCC e 18
runSGWT . . . e e 19
runSpecGraph L e e e 20
sgwt_auto_scales 21
sgwt_energy_analysis L. 22
sgwt_forward L L 22
sgwt_get_kernels oL 24
SEWE_INVETSE . . v v v v v v v e e e e e e e e e e e e e e e e e e 24
simulate_checkerboard 25
simulate_moving_circles L e 26
simulate_multiscale L 27
simulate_multiscale_overlap 28
simulate_stripe_patternso e e e e e e e e e e e e 29
visualize_checkerboard 30
visualize_moving_circles 31
visualize_multiscale L e 32
visualize_sgwt_kernels L 33
visualize_similarity_Xyo 34
visualize_stripe_patterns i e e e 36

Index 38

BioGSP-package 3

BioGSP-package BioGSP: Biological Graph Signal Processing for Spatial Data Analy-
Sis

Description

The BioGSP package provides a comprehensive implementation of Graph Signal Processing (GSP)
methods including Spectral Graph Wavelet Transform (SGWT) for analyzing spatial patterns in
biological data. This implementation is based on Hammond, Vandergheynst, and Gribonval (2011)
"Wavelets on Graphs via Spectral Graph Theory".

Details
The package enables multi-scale analysis of spatial signals by:

* Building graphs from spatial coordinates using k-nearest neighbors

» Computing graph Laplacian eigendecomposition for spectral analysis

* Designing wavelets in the spectral domain using various kernel functions

* Decomposing signals into scaling and wavelet components at multiple scales
* Providing reconstruction capabilities with error analysis

* Offering comprehensive visualization and analysis tools

Main Functions

initSGWT Initialize SGWT object with data and parameters
runSpecGraph Build graph and compute eigendecomposition
runSGWT Perform forward and inverse SGWT transforms
runSGCC Calculate weighted similarity between signals
sgwt_forward Forward SGWT transform

sgwt_inverse Inverse SGWT transform
sgwt_energy_analysis Energy distribution analysis
plot_sgwt_decomposition Visualization of SGWT components

demo_sgwt Demonstration with synthetic data

Applications
The BioGSP package is particularly useful for:

* Spatial biology: Analyzing cell distribution patterns in tissue imaging (CODEX, Visium, etc.)
* Single-cell genomics: Spatial transcriptomics and proteomics analysis

* Neuroscience: Brain connectivity and signal analysis

* Pathology: Tumor microenvironment and tissue architecture analysis

* Developmental biology: Spatial pattern formation and cell fate mapping

e Immunology: Immune cell spatial organization and interactions

4 cal_laplacian

Author(s)

BioGSP Development Team

References

Hammond, D. K., Vandergheynst, P., & Gribonval, R. (2011). Wavelets on graphs via spectral graph
theory. Applied and Computational Harmonic Analysis, 30(2), 129-150.

See Also
Useful links:

* https://github.com/BMEngineeR/BioGSP
* Report bugs at https://github.com/BMEngineeR/BioGSP/issues

Examples

Load the package
library(BioGSP)

Run a quick demo
demo_result <- demo_sgwt()

Generate synthetic data
set.seed(123)
n <- 100
data <- data.frame(

X = runif(n, 0, 10),

y = runif(n, 0, 10),

signal = sin(runif(n, @, 2*xpi))
)

New workflow: Initialize -> Build Graph -> Run SGWT

SG <- initSGWT(data, signals = "signal”, J = 4, kernel_type = "heat")
SG <- runSpecGraph(SG, k = 8)

SG <- runSGWT(SG)

Analyze results
energy_analysis <- sgwt_energy_analysis(SG)
print(energy_analysis)

cal_laplacian Calculate Graph Laplacian Matrix

Description

Compute unnormalized, normalized, or random-walk Laplacian from an adjacency matrix.

https://github.com/BMEngineeR/BioGSP
https://github.com/BMEngineeR/BioGSP/issues

checkKband 5

Usage

cal_laplacian(W, type = c("unnormalized”, "normalized”, "randomwalk"))
Arguments

W A square adjacency matrix (can be dense or sparse).

type Type of Laplacian to compute: "unnormalized", "normalized", or "randomwalk".
Value

Laplacian matrix of the same class as input.

Examples
W <- matrix(c(o, 1, 1, 1, @, 1, 1, 1, @), nrow = 3)
cal_laplacian(W, type = "normalized”)
checkKband Check K-band limited property of signals
Description

Analyze whether signals are k-band limited by comparing low-frequency and high-frequency Fourier
coefficients using eigendecomposition and statistical testing. Builds graph and computes Laplacian
directly from SGWT data.

Usage
checkKband(
SG,
signals = NULL,
alpha = 0.05,
verbose = TRUE,
k = 25,
laplacian_type = "normalized”
)
Arguments
SG SGWT object with Data slot (from initSGWT)
signals Character vector of signal names to analyze. If NULL, uses all signals from
SG$Data$signals
alpha Significance level for Wilcoxon test (default: 0.05)
verbose Logical; if TRUE, print progress messages (default: TRUE)
k Number of nearest neighbors for graph construction (default: 25)

laplacian_type Type of Laplacian ("unnormalized", "normalized", or "randomwalk") (default:
"normalized")

6 codex_toy_data

Value
List containing:

is_kband_limited Logical; TRUE if all signals are k-band limited
knee_point_low Integer; knee point index for low-frequency eigenvalues
knee_point_high Integer; knee point index for high-frequency eigenvalues

signal_results List with per-signal test results including p-values and Fourier coefficients

Examples

Create example data
data <- data.frame(x = runif(100), y = runif(100),
signall = rnorm(100), signal2 = rnorm(100))

Initialize SGWT object (no need to run runSpecGraph)
SG <- initSGWT(data, signals = c("signall”, "signal2"))

Check k-band limited property
result <- checkkband(SG, signals = c("signall”, "signal2"), k = 30)
if (result$is_kband_limited) {
cat("All signals are k-band limited")
3

codex_toy_data Toy CODEX Spatial Cell Type Data

Description

A synthetic dataset mimicking CODEX multiplexed imaging data for demonstrating Spectral Graph
Wavelet Transform (SGWT) analysis on spatial cell type distributions. The dataset contains spatial
coordinates and cell type annotations for multiple immune cell populations arranged in realistic
spatial clusters.

Usage

data(codex_toy_data)

Format
A data frame with 18604 rows and 5 columns:

cellLabel Character. Unique identifier for each cell

Y_cent Numeric. Y coordinate of cell centroid (0-115 range)

X_cent Numeric. X coordinate of cell centroid (0-116 range)

AnnotationS Character. Full descriptive cell type name

ROI_num Character. Region of interest identifier ("ROI_0" through "ROI_15")

codex_toy_data

Details

The dataset contains 16 regions of interest (ROI_0 through ROI_15) with different spatial patterns
and varying cell counts (945-1497 cells per ROI). Each ROI represents a distinct tissue region with

unique spatial arrangements of the same cell types.

ROI Distribution:

ROIL_0: 952 cells

ROI_1: 945 cells

ROI_2: 1155 cells

ROI_3: 1421 cells

ROI_4: 1096 cells

ROI_S: 1420 cells

ROI_6-ROI_15: 958-1497 cells each

Cell types across all ROIs include:

BCL6- B Cell (~3719 cells): Primary B cell population
CD4 T (~4092 cells): Helper T cells - largest population
CDS8 T (~3346 cells): Cytotoxic T cells

DC (~2233 cells): Dendritic cells

M1 (~1490 cells): M1 macrophages

CD4 Treg (~1490 cells): Regulatory T cells

BCL6+ B Cell (~931 cells): Activated B cells
Endothelial (~746 cells): Vascular cells

M2 (~370 cells): M2 macrophages

Myeloid (~186 cells): Other myeloid cells

Other (~1 cells): Miscellaneous cell types

This synthetic data is designed to demonstrate:

Source

Generated synthetically using clustered normal distributions with realistic parameters based on real

Spatial clustering patterns of different cell types
Multi-scale spatial analysis using SGWT
Cross-cell type correlation analysis

Graph construction and eigenvalue analysis

Wavelet decomposition of spatial signals

CODEX data characteristics.

8 codex_toy_data

Examples

Load the toy dataset
data(codex_toy_data)

Examine the structure
str(codex_toy_data)
head(codex_toy_data)

Summary of cell types
table(codex_toy_data$Annotation5)

Summary by ROI
table(codex_toy_data$ROI_num)
table(codex_toy_data$ROI_num, codex_toy_data$Annotation5)

Quick visualization of spatial distribution
if (requireNamespace("ggplot2"”, quietly = TRUE)) {
library(ggplot2)
ggplot(codex_toy_data, aes(x = X_cent, y = Y_cent, color = Annotation5)) +
geom_point(size = 0.8, alpha = 0.7) +

facet_wrap(~ROI_num, scales = "free") +
labs(title = "Toy CODEX Spatial Cell Distribution by ROI",
x = "X Coordinate”, y = "Y Coordinate”) +

theme_minimal() +
scale_y_reverse()
Basic SGWT analysis example
Focus on BCL6- B Cell cells in ROI_1 for SGWT analysis
bclénb_data <- codex_toy_datal[codex_toy_data$Annotation5 == "BCL6- B Cell” &

codex_toy_data$ROI_num == "ROI_1",]

Create binned representation

library(dplyr)
binned_data <- codex_toy_data %>%
filter(Annotation5 == "BCL6- B Cell”, ROI_num == "ROI_1") %>%
mutate(
x_bin = cut(X_cent, breaks = 20, labels = FALSE),
y_bin = cut(Y_cent, breaks = 20, labels = FALSE)
) %%
group_by(x_bin, y_bin) %>%
summarise(cell_count = n(), .groups = 'drop')

Prepare for SGWT
complete_grid <- expand.grid(x_bin = 1:20, y_bin = 1:20)
sgwt_data <- complete_grid %>%
left_join(binned_data, by = c(”"x_bin", "y_bin")) %>%
mutate(
cell_count = ifelse(is.na(cell_count), @, cell_count),
x = x_bin,
y = y_bin,

compare_kernel_families

signal = cell_count / max(cell_count, na.rm = TRUE)
) %%
select(x, y, signal)

Apply SGWT using new workflow

SG <- initSGWT(sgwt_data, signals = "signal”, J
SG <- runSpecGraph(SG, k = 8)

SG <~ runSGWT(SG)

3, kernel_type = "heat")

View results
print(SG)

compare_kernel_families

Compare different kernel families

Description

Visualize and compare different kernel families (both scaling and wavelet filters)

Usage

compare_kernel_families(
x_range = c(0, 3),
scale_param = 1,
plot_results = TRUE

)

Arguments
X_range Range of x values to evaluate (default: c(0, 3))
scale_param Scale parameter for all functions (default: 1)

plot_results Whether to plot the comparison (default: TRUE)

Value

Data frame with x values and kernel values for each family

Examples

comparison <- compare_kernel_families()
comparison <- compare_kernel_families(x_range = c(@, 5), scale_param = 1.5)

10 cosine_similarity

compute_sgwt_filters Compute SGWT filters

Description

Compute wavelet and scaling function coefficients in the spectral domain

Usage

compute_sgwt_filters(eigenvalues, scales, lmax = NULL, kernel_type = "heat")
Arguments

eigenvalues Eigenvalues of the graph Laplacian

scales Vector of scales for the wavelets

1max Maximum eigenvalue (optional)

kernel_type Kernel family that defines both scaling and wavelet filters (default: "mexican_hat",

options: "mexican_hat", "meyer", "heat")

Value

List of filters (scaling function + wavelets)

Examples

eigenvals <- c(0, 0.1, 0.5, 1.0, 1.5)
scales <- c(2, 1, 0.5)
filters <- compute_sgwt_filters(eigenvals, scales)

filters_meyer <- compute_sgwt_filters(eigenvals, scales, kernel_type = "meyer"”)
filters_heat <- compute_sgwt_filters(eigenvals, scales, kernel_type = "heat")
cosine_similarity Calculate cosine similarity between two vectors
Description

Calculate cosine similarity between two numeric vectors with numerical stability

Usage

cosine_similarity(x, y, eps = 1le-12)

demo_sgwt 11

Arguments

X First vector

y Second vector

eps Small numeric for numerical stability when norms are near zero (default le-12)
Value

Cosine similarity value (between -1 and 1)

Examples

x <- c(1, 2, 3)

y <- c(2, 3, 4)

similarity <- cosine_similarity(x, y)

With custom eps for numerical stability
similarity2 <- cosine_similarity(x, y, eps = 1e-10)

demo_sgwt Demo function for SGWT

Description
Demonstration function showing basic SGWT usage with synthetic data using the new workflow:
initSGWT -> runSpecGraph -> runSGWT

Usage

demo_sgwt (verbose = TRUE)

Arguments

verbose Logical; if TRUE, show progress messages and results (default: TRUE)

Value

SGWT object with complete analysis

Examples

SG <- demo_sgwt ()
print(SG)

12 FastDecompositionLap

FastDecompositionLap Fast eigendecomposition of Laplacian matrix

Description

Perform fast eigendecomposition using RSpectra for large matrices

Usage

FastDecompositionLap(
laplacianMat = NULL,

k_eigen = 25,
which = "LM",
sigma = NULL,
opts = list(),
lower = TRUE,
)
Arguments

laplacianMat Laplacian matrix

k_eigen Number of eigenvalues to compute (default: 25)
which Which eigenvalues to compute ("LM", "SM", etc.)
sigma Shift parameter for eigenvalue computation

opts Additional options for eigenvalue computation
lower Whether to compute from lower end of spectrum

Additional arguments

Value

List with eigenvalues (evalues) and eigenvectors (evectors)

Examples

Create a Laplacian matrix and decompose
L <- matrix(c(2, -1, -1, -1, 2, -1, -1, -1, 2), nrow = 3)
decomp <- FastDecompositionLap(L, k_eigen = 2)

find_knee_point 13

find_knee_point Find knee point in a curve

Description

Simple knee point detection using the maximum curvature method

Usage

find_knee_point(y, sensitivity = 1)

Arguments

y Numeric vector of y values

sensitivity Sensitivity parameter (not used in this simple implementation)
Value

Index of the knee point

Examples

y <= c(1, 2, 3, 10, 11, 12) # curve with a knee
knee_idx <- find_knee_point(y)

gft Graph Fourier Transform

Description

Compute the Graph Fourier Transform (GFT) of a signal using Laplacian eigenvectors.

Usage
gft(signal, U)

Arguments

signal Input signal (vector or matrix)

U Matrix of eigenvectors (dense matrix preferred)
Value

Transformed signal in the spectral domain (vector or matrix)

14 igft

hello_sgwt Hello function for SGWT package demonstration

Description

Simple hello function to demonstrate package loading

Usage

hello_sgwt()

Value

Character string with greeting

Examples

hello_sgwt()

igft Inverse Graph Fourier Transform

Description

Compute the Inverse Graph Fourier Transform (IGFT) of spectral coefficients using Laplacian
eigenvectors.

Usage

igft(fourier_coeffs, U)

Arguments

fourier_coeffs Input Fourier coefficients (vector or matrix)

U Matrix of eigenvectors (dense matrix preferred)

Value

Reconstructed signal in the vertex domain (vector or matrix)

initSGWT 15
Examples
Create example data
data <- data.frame(x = runif(50), y = runif(50), signal = rnorm(50))
SG <- initSGWT(data, signals = "signal")
SG <- runSpecGraph(SG, k = 10)
eigenvectors <- SG$Graph$eigenvectors
Single signal - use GFT to get Fourier coefficients
fourier_coeffs <- gft(data$signal, eigenvectors)
signal_reconstructed <- igft(fourier_coeffs, eigenvectors)
Multiple signals (batch processing)
signals_matrix <- cbind(data$signal, data$signal x 2)
fourier_coeffs_matrix <- gft(signals_matrix, eigenvectors)
signals_reconstructed <- igft(fourier_coeffs_matrix, eigenvectors)
initSGWT Initialize SGWT object
Description
Build an SGWT object with Data and Parameters slots, validate inputs.
Usage
initSGWT(
data.in,
x_col = "x",
y_COl = Hyll ,
signals = NULL,
scales = NULL,
J =05,
scaling_factor = 2,
kernel_type = "heat”
)
Arguments
data.in Data frame containing spatial coordinates and signal data
x_col Character string specifying the column name for X coordinates (default: "x")
y_col Character string specifying the column name for Y coordinates (default: "y")
signals Character vector of signal column names to analyze. If NULL, all non-coordinate
columns are used.
scales Vector of scales for the wavelets. If NULL, scales are auto-generated.
J Number of scales to generate if scales is NULL (default: 5)

scaling_factor Scaling factor between consecutive scales (default: 2)

non

kernel_type Kernel family ("mexican_hat", "meyer", or "heat") (default: "heat")

16 plot_ FM

Value

SGWT object with Data and Parameters slots initialized

Examples

Initialize SGWT object
data <- data.frame(x = runif(100), y = runif(100),

signall = rnorm(100), signal2 = rnorm(100))
SG <- initSGWT(data, signals = c("signall”, "signal2"))

plot_FM Plot Fourier modes (eigenvectors) from SGWT object

Description
Plot low-frequency and high-frequency Fourier modes (eigenvectors) from the graph Laplacian
eigendecomposition in an SGWT object

Usage
plot_FM(SG, mode_type = "both"”, n_modes = 6, ncol = 3, point_size = 1.5)

Arguments
SG SGWT object with Graph slot computed (from runSpecGraph)
mode_type Type of modes to plot: "low", "high", or "both" (default: "both")
n_modes Number of modes to plot for each type (default: 6)
ncol Number of columns in plot layout (default: 3)
point_size Size of points in the plot (default: 1.5)

Value

Combined plot of Fourier modes

Examples

Create example data
data <- data.frame(x = runif(100), y = runif(100), signal = rnorm(100))

Plot both low and high frequency modes

SG <- initSGWT(data, signals = "signal")

SG <- runSpecGraph(SG, k = 15)

plot_FM(SG, mode_type = "both”, n_modes = 4)

Plot only low frequency modes
plot_FM(SG, mode_type = "low"”, n_modes = 8)

plot_sgwt_decomposition 17

plot_sgwt_decomposition
Plot SGWT decomposition results

Description
Visualize SGWT decomposition components including original signal, scaling function, wavelet
coefficients, and reconstructed signal

Usage

plot_sgwt_decomposition(SG, signal_name = NULL, plot_scales = NULL, ncol = 3)

Arguments
SG SGWT object with Forward and Inverse results computed
signal_name Name of signal to plot (default: first signal)

plot_scales Which wavelet scales to plot (default: first 4)

ncol Number of columns in the plot layout (default: 3)

Value

ggplot object with combined plots

Examples

Create and analyze example data

data <- data.frame(x = runif(100), y = runif(100), signall = rnorm(100))
SG <- initSGWT(data, signals = "signall")

SG <- runSpecGraph(SG, k = 15)

SG <- runSGWT(SG)

Plot decomposition

plots <- plot_sgwt_decomposition(SG, signal_name = "signall")
print(plots)
print.SGWT Print method for SGWT objects
Description

Print method for SGWT objects

18 runSGCC

Usage
S3 method for class 'SGWT'
print(x, ...)
Arguments
X SGWT object to print
Additional arguments passed to print methods
Value

Invisibly returns the input SGWT object. Called for side effects (prints object summary to console).

runSGCC Run SGCC weighted similarity analysis in Fourier domain

Description

Calculate energy-normalized weighted similarity between two signals using Fourier domain coeffi-
cients directly (no vertex domain reconstruction). Excludes DC component and uses energy-based
weighting consistent with Parseval’s theorem.

Usage

runSGCC(
signall,
signal2,
SG = NULL,
eps = le-12,
validate = TRUE,
return_parts = TRUE,
low_only = FALSE

)
Arguments

signall Either a signal name (character) for SG object, or SGWT Forward result, or
SGWT object

signal2 Either a signal name (character) for SG object, or SGWT Forward result, or
SGWT object

SG SGWT object (required if signall/signal2 are signal names)

eps Small numeric for numerical stability (default: le-12)

validate Logical; if TRUE, check consistency (default: TRUE)

return_parts Logical; if TRUE, return detailed components (default: TRUE)
low_only Logical; if TRUE, compute only low-frequency similarity (default: FALSE)

runSGWT 19

Value

Similarity analysis results computed in Fourier domain

Examples

Create example data and compute SGWT
data <- data.frame(x = runif(100), y = runif(100),
signall = rnorm(100), signal2 = rnorm(100))
SG <- initSGWT(data, signals = c("signall”, "signal2"))
SG <- runSpecGraph(SG, k = 15)
SG <- runSGWT(SG)

Between two signals in same SGWT object
similarity <- runSGCC("signall"”, "signal2", SG = SG)
print(similarity)

Between two SGWT objects

data2 <- data.frame(x = runif(100), y = runif(100), signal = rnorm(100))
SG2 <- initSGWT(data2, signals = "signal")

SG2 <- runSpecGraph(SG2, k = 15)

SG2 <- runSGWT(SG2)

similarity2 <- runSGCC(SG, SG2)
print(similarity?2)

runSGWT Run SGWT forward and inverse transforms for all signals

Description
Perform SGWT analysis on all signals in the SGWT object. Uses batch processing for multiple
signals when possible for efficiency. Assumes Graph slot is populated by runSpecGraph().

Usage

runSGWT (SG, use_batch = TRUE, verbose = TRUE)

Arguments
SG SGWT object with Graph slot populated
use_batch Whether to use batch processing for multiple signals (default: TRUE)
verbose Whether to print progress messages (default: TRUE)

Value

Updated SGWT object with Forward and Inverse slots populated

20 runSpecGraph

Examples

Create example data

data <- data.frame(x = runif(100), y = runif(100), signal = rnorm(100))
SG <- initSGWT(data, signals = "signal")

SG <- runSpecGraph(SG, k = 15)

Uses batch processing by default
SG <- runSGWT(SG)

Or force individual processing

SG2 <- initSGWT(data, signals = "signal”)
SG2 <- runSpecGraph(SG2, k = 15)

SG2 <- runSGWT(SG2, use_batch = FALSE)

runSpecGraph Build spectral graph for SGWT object

Description

Generate Graph slot information including adjacency matrix, Laplacian matrix, eigenvalues, and
eigenvectors.

Usage

runSpecGraph(
SG,
k = 25,
laplacian_type = "normalized”,
length_eigenvalue = NULL,
verbose = TRUE

)
Arguments
SG SGWT object from initSGWT()
k Number of nearest neighbors for graph construction (default: 25)

laplacian_type Type of graph Laplacian ("unnormalized", "normalized", or "randomwalk") (de-
fault: "normalized")

length_eigenvalue
Number of eigenvalues/eigenvectors to compute (default: NULL, uses full length)

verbose Whether to print progress messages (default: TRUE)

Value

Updated SGWT object with Graph slot populated

sgwt_auto_scales

Examples

Create example data

data <- data.frame(x = runif(100), y = runif(100), signal = rnorm(100))

SG <- initSGWT(data, signals = "signal")

Uses full length by default
SG <- runSpecGraph(SG, k = 30, laplacian_type = "normalized")

Or specify custom length

SG2 <- initSGWT(data, signals = "signal"”)

SG2 <- runSpecGraph(SG2, k = 30, laplacian_type = "normalized”,
length_eigenvalue = 30)

21

sgwt_auto_scales Generate automatic scales for SGWT

Description

Generate logarithmically spaced scales for SGWT

Usage

sgwt_auto_scales(lmax, J = 5, scaling_factor = 2)

Arguments
1max Maximum eigenvalue
J Number of scales

scaling_factor Scaling factor between consecutive scales

Value

Vector of scales

Examples

scales <- sgwt_auto_scales(lmax = 2.0, J = 5, scaling_factor =

2)

22 sgwt_forward

sgwt_energy_analysis Analyze SGWT energy distribution across scales in Fourier domain

Description

Calculate and analyze energy distribution across different scales using Fourier domain coefficients
directly (consistent with Parseval’s theorem). Excludes DC component for more accurate energy
analysis.

Usage

sgwt_energy_analysis(SG, signal_name = NULL)

Arguments
SG SGWT object with Forward results computed
signal_name Name of signal to analyze (default: first signal)
Value

Data frame with energy analysis results computed in Fourier domain

Examples

Create and analyze example data

data <- data.frame(x = runif(100), y = runif(100), signall = rnorm(100))
SG <- initSGWT(data, signals = "signall")

SG <- runSpecGraph(SG, k = 15)

SG <- runSGWT(SG)

Analyze energy distribution
energy_analysis <- sgwt_energy_analysis(SG, signal_name = "signall")
print(energy_analysis)

sgwt_forward Forward SGWT transform (single or batch)

Description

Transform signal(s) to spectral domain and apply SGWT filters. Handles both single signals (vector)
and multiple signals (matrix) efficiently. Stores original and filtered Fourier coefficients for analysis.

sgwt_forward 23

Usage

sgwt_forward(
signal,
eigenvectors,
eigenvalues,
scales,
Imax = NULL,
kernel_type = "heat”

Arguments

signal Input signal vector OR matrix where each column is a signal (n_vertices x
n_signals)

eigenvectors FEigenvectors of the graph Laplacian

eigenvalues Eigenvalues of the graph Laplacian
scales Vector of scales for the wavelets
1max Maximum eigenvalue (optional)

kernel_type Kernel family that defines both scaling and wavelet filters (default: "heat")

Value
List containing:

fourier_coefficients List with original and filtered Fourier coefficients

filters Filter bank used

Examples

Create example data and compute graph

data <- data.frame(x = runif(50), y = runif(50), signal = rnorm(50))
SG <- initSGWT(data, signals = "signal”, J = 3)

SG <- runSpecGraph(SG, k = 10)

eigenvectors <- SG$Graph$eigenvectors

eigenvalues <- SG$Graph$eigenvalues

scales <- SG$Parameters$scales

Single signal
signal <- data$signal
result <- sgwt_forward(signal, eigenvectors, eigenvalues, scales)

Multiple signals (batch processing)
signals_matrix <- cbind(data$signal, data$signal * 2, data$signal * 0.5)
result <- sgwt_forward(signals_matrix, eigenvectors, eigenvalues, scales)

24 sgwt_inverse

sgwt_get_kernels Get a unified kernel family (low-pass and band-pass) by kernel_type

Description

Returns a pair of functions implementing the scaling (low-pass) and wavelet (band-pass) kernels for
a given kernel family. This enforces consistency: a single kernel_type defines both filters.

Usage

sgwt_get_kernels(kernel_type = "heat")

Arguments

"non

kernel_type Kernel family name ("mexican_hat", "meyer", or "heat")

Value

A list with two functions: list(scaling = function(x, scale_param), wavelet = function(x, scale_param))

sgwt_inverse Inverse SGWT transform (single or batch)

Description

Reconstruct signal(s) from filtered Fourier coefficients using inverse GFT. Handles both single sig-
nals and multiple signals efficiently. Returns detailed inverse transform results including low-pass,
band-pass approximations, reconstructed signal(s), and reconstruction error(s).

Usage

sgwt_inverse(sgwt_decomp, eigenvectors, original_signal = NULL)

Arguments

sgwt_decomp SGWT decomposition object from sgwt_forward

eigenvectors Eigenvectors of the graph Laplacian (for inverse GFT)

original_signal
Original signal vector OR matrix (n_vertices X n_signals) for error calculation
(optional)

simulate_checkerboard 25

Value

List containing:

vertex_approximations Named list with inverse-transformed signals in vertex domain:

* low_pass: Low-pass (scaling) approximation
* wavelet_1, wavelet_2, etc.: Band-pass (wavelet) approximations by scale

reconstructed_signal Full reconstructed signal (vector or matrix)

reconstruction_error RMSE (scalar for single signal, vector for multiple signals)

Examples

Create example data and perform forward transform

data <- data.frame(x = runif(50), y = runif(50), signal = rnorm(50))
SG <- initSGWT(data, signals = "signal”, J = 3)

SG <- runSpecGraph(SG, k = 10)

eigenvectors <- SG$Graph$eigenvectors

eigenvalues <- SG$Graph$eigenvalues

scales <- SG$Parameters$scales

Single signal - forward transform first

original_signal <- data$signal

sgwt_decomp <- sgwt_forward(original_signal, eigenvectors, eigenvalues, scales)
inverse_result <- sgwt_inverse(sgwt_decomp, eigenvectors, original_signal)

Multiple signals (batch processing)

original_signals_matrix <- cbind(data$signal, data$signal * 2)

sgwt_decomp <- sgwt_forward(original_signals_matrix, eigenvectors, eigenvalues, scales)
inverse_result <- sgwt_inverse(sgwt_decomp, eigenvectors, original_signals_matrix)

simulate_checkerboard Simulate checkerboard pattern

Description

Generate a checkerboard pattern with alternating signals

Usage

simulate_checkerboard(grid_size = 8, tile_size = 1)

Arguments

grid_size Number of tiles per row/column (default: 8)

tile_size Resolution of each tile in pixels per side (default: 1)

26 simulate_moving_circles

Value

Data frame with X, Y coordinates and signal_1, signal_2 patterns

Examples

Generate 8x8 checkerboard with 10x10 pixel tiles

df <- simulate_checkerboard(grid_size = 8, tile_size = 10)
p <- visualize_checkerboard(df)

print(p)

simulate_moving_circles
Simulate Moving Circles Pattern

Description

Generate patterns of two circles moving toward each other horizontally. Creates mutually exclu-
sive signals where overlapping pixels are assigned to signal_1 (circle 1). The circles start at fixed
horizontal distances from the midline and move toward the center.

Usage

simulate_moving_circles(
grid_size = 60,
radius_seq = 6:14,
n_steps = 10,
center_distance = 30,
radius2_factor = 1.5,

seed = NULL,
verbose = TRUE
)
Arguments
grid_size Size of the spatial grid (default: 60)
radius_seq Vector of radii for circle 1 (default: 6:14)
n_steps Number of movement steps (default: 10)

center_distance
Initial horizontal distance from midline for both centers (default: 30)

radius2_factor Circle 2 radius = radius_seq * radius2_factor (default: 1.5)
seed Random seed for reproducibility (default: 123)
verbose Logical; if TRUE, show progress bar and messages (default: TRUE)

simulate_multiscale

Value

List of data frames, each containing X, Y coordinates and signal_1, signal_2 binary signals

Examples

Generate moving circles patterns with default parameters
patterns <- simulate_moving_circles()

Custom parameters

patterns <- simulate_moving_circles(
grid_size = 80,
radius_seq = c(8, 12, 16),
n_steps = 8,
center_distance = 35,
radius2_factor = 1.2

27

simulate_multiscale Simulate Multi-center Multi-scale Concentric Ring Patterns

Description

Generate multi-center, multi-scale concentric ring simulation data. Creates patterns with inner cir-
cles and outer rings where the outer radius shrinks from a fixed starting point to a factor of the inner

radius across multiple steps.

Usage

simulate_multiscale(
grid_size = 60,
Ra_seq = seq(2.5, 20, by = 2.5),
n_steps = 10,
n_centers = 1,
outer_start = 40,
outer_end_factor = 1.2,

seed = NULL,
verbose = TRUE
)
Arguments
grid_size Size of the spatial grid (default: 60)
Ra_seq Vector of inner circle radii (default: seq(2.5, 20, by = 2.5))
n_steps Number of outer radius shrinkage steps (default: 10)
n_centers Number of circle centers (default: 1)

outer_start Fixed starting outer radius (default: 40)

28 simulate_multiscale_overlap

outer_end_factor
Outer radius shrinks to this factor * Ra (default: 1.2)

seed Random seed for reproducible center placement (default: 123)
verbose Logical; if TRUE, show progress bar and messages (default: TRUE)
Value

List of data frames, each containing X, Y coordinates and signal_1, signal_2 binary signals

Examples

Generate multi-center patterns with default parameters
patterns <- simulate_multiscale()

Custom parameters

patterns <- simulate_multiscale(
grid_size = 80,
Ra_seq = seq(5, 25, by = 5),
n_steps = 8,
n_centers = 2,
outer_start = 50

simulate_multiscale_overlap
Simulate Multiple Center Patterns with Fixed Centers

Description

Generate spatial patterns with multiple circular centers at fixed positions. Similar to simulate_multiscale
but with centers placed at fixed locations for reproducible pattern generation. Creates concentric
circle patterns with inner circle A and outer ring B at various radius combinations.

Usage

simulate_multiscale_overlap(
grid_size = 60,
n_centers = 3,
Ra_seq = c(10, 5, 1),
Rb_seq = c(10, 5, 1),
seed = NULL,
verbose = TRUE

simulate_stripe_patterns 29

Arguments
grid_size Size of the spatial grid (default: 60)
n_centers Number of pattern centers to generate. If 1, center is placed at grid center. If >
1, centers are randomly placed but fixed by seed (default: 3)
Ra_seq Vector of inner circle radii (default: c(10, 5, 1))
Rb_seq Vector of outer ring radii (default: c(10, 5, 1))
seed Random seed for reproducible center placement (default: 123)
verbose Logical; if TRUE, show progress bar and messages (default: TRUE)
Value

List of data frames, each containing X, Y coordinates and signal_1, signal_2 binary signals

Examples

Generate multi-center patterns with fixed centers
patterns <- simulate_multiscale_overlap()

Single center at grid center
patterns_single <- simulate_multiscale_overlap(n_centers = 1)

Custom parameters with multiple centers
Ra_seq <- seq(from = 10, to = 3, length.out
Rb_seq <- seq(from = 15, to = 2, length.out
patterns <- simulate_multiscale_overlap(

Ra_seq = Ra_seq,

Rb_seq = Rb_seq,

n_centers = 2,

seed = 456

4
4

simulate_stripe_patterns
Simulate Stripe Patterns

Description

Generate stripe patterns with two parallel stripes separated by a gap. Creates rotatable stripe patterns
with configurable gap, width, and rotation angle.

30 visualize_checkerboard

Usage

simulate_stripe_patterns(
grid_size = 100,
gap_seq = c(10),
width_seq = c(5),
theta_seq = c(0),

eps = l1e-09,
verbose = TRUE
)
Arguments
grid_size Size of the spatial grid (default: 100)
gap_seq Vector of gap distances between stripe centers (default: c(10))
width_seq Vector of stripe widths (default: c(5))
theta_seq Vector of rotation angles in degrees (default: c(0))
eps Small numeric value for open boundary conditions to avoid overlap at stripe
edges (default: 1e-9)
verbose Logical; if TRUE, show progress messages (default: TRUE)
Value

List of data frames, each containing X, Y coordinates and signal_1, signal_2 binary signals

Examples

Generate stripe patterns with default parameters
patterns <- simulate_stripe_patterns()

Custom parameters
patterns <- simulate_stripe_patterns(
grid_size = 80,
gap_seq = c(10, 20),
width_seq = c(5, 10, 20),
theta_seq = c(0, 30, 60),
eps = le-9,
verbose = TRUE

visualize_checkerboard
Visualize checkerboard pattern

Description

Create a visualization of checkerboard pattern data

visualize_moving_circles 31

Usage
visualize_checkerboard(df, color1l = "black”, color2 = "white")
Arguments
df Data frame with X, Y coordinates and signal_1, signal_2 columns
colori Color for signal_1 tiles (default: "black")
color2 Color for signal_2 tiles (default: "white")
Value

ggplot object showing the checkerboard pattern

Examples

df <- simulate_checkerboard(grid_size = 6, tile_size = 5)
p <- visualize_checkerboard(df, colorl = "darkblue”, color2 = "lightgray")
print(p)

visualize_moving_circles
Visualize Moving Circles Pattern

Description

Visualize the simulated moving circles patterns from simulate_moving_circles

Usage

visualize_moving_circles(
sim_data,
bg_color = "grey90”,
signall_color = "#16964a",
signal2_color = "#2958a8",
show_subtitle = TRUE,
sort_order = c("ascending”, "descending"),
panel_spacing = 0.1,
title_size = 12

32

Arguments

sim_data
bg_color
signall_color
signal2_color
show_subtitle
sort_order
panel_spacing

title_size

Value

visualize_multiscale

Output from simulate_moving_circles function

Background color for plots (default: "grey90")

Color for signal 1 (default: "#16964a")

Color for signal 2 (default: "#2958a8")

Logical; if TRUE (default), show parameter values in facet labels
Order for sorting ("ascending" or "descending", default: "ascending")
Control spacing between panels in lines (default: 0.1)

Size of title text (default: 12)

ggplot object with faceted visualization

Examples

Generate and visualize patterns
sim_data <- simulate_moving_circles(
radius_seq = 6:14,

n_steps = 10
)

plot_grid <- visualize_moving_circles(sim_data)

print(plot_grid)

visualize_multiscale Visualize Multi-center Multi-scale Concentric Ring Patterns

Description

Visualize the simulated concentric ring patterns from simulate_multiscale

Usage

visualize_multiscale(

sim_data,
Ra_seq,
n_steps,

bg_color = "grey90”,

signall_color

= "#16964a"

signal2_color = "#2958a8",

show_subtitle

sort_order

= TRUE,

c("ascending"”, "descending"),

panel_spacing = 0.1,

title_size

12

visualize_sgwt_kernels 33

Arguments
sim_data Output from simulate_multiscale function
Ra_seq Vector of Ra values used in simulation
n_steps Number of steps used in simulation
bg_color Background color for plots (default: "grey90")

signall_color Color for signal 1 (default: "#16964a")

signal2_color Color for signal 2 (default: "#2958a8")

show_subtitle Logical; if TRUE (default), show parameter values in facet labels
sort_order Order for sorting ("ascending" or "descending", default: "ascending")
panel_spacing Control spacing between panels in lines (default: 0.1)

title_size Size of title text (default: 12)

Value

ggplot object with faceted visualization

Examples

Generate and visualize patterns
sim_data <- simulate_multiscale(
Ra_seq = seq(2.5, 20, by = 2.5),
n_steps = 10
)
plot_grid <- visualize_multiscale(sim_data,
Ra_seq = seq(2.5, 20, by = 2.5),
n_steps = 10)
print(plot_grid)

visualize_sgwt_kernels
Visualize SGWT kernels and scaling functions

Description

Visualize the scaling function and wavelet kernels used in SGWT based on the eigenvalue spectrum
and selected parameters

Usage

visualize_sgwt_kernels(
eigenvalues,
scales = NULL,
J = 4,
scaling_factor = 2,

34 visualize_similarity_xy

kernel_type = "heat”,
Imax = NULL,
eigenvalue_range = NULL,
resolution = 1000

)
Arguments
eigenvalues Vector of eigenvalues from graph Laplacian
scales Vector of scales for the wavelets (if NULL, auto-generated)
J Number of scales to generate if scales is NULL (default: 4)
scaling_factor Scaling factor between consecutive scales (default: 2)
kernel_type Type of wavelet kernel ("mexican_hat" or "meyer", default: "mexican_hat")
1max Maximum eigenvalue (optional, computed if NULL)

eigenvalue_range
Range of eigenvalues to plot (default: full range)

resolution Number of points for smooth curve plotting (default: 1000)

Value

List containing the filter visualization plot and filter values

Examples

Generate some example eigenvalues
eigenvals <- seq(@, 2, length.out = 100)

Visualize kernels with specific parameters
viz_result <- visualize_sgwt_kernels(
eigenvalues = eigenvals,
J =4,
scaling_factor = 2,
kernel_type = "heat”

)
print(viz_result$plot)

visualize_similarity_xy
Visualize similarity in low vs non-low frequency space

Description

Create a scatter plot with low-frequency similarity (c_low) on x-axis and non-low-frequency simi-
larity (c_nonlow) on y-axis from runSGCC results

visualize_similarity_xy 35

Usage

visualize_simi
similarity_r

larity_xy(
esults,

point_size = 2,
point_color = "steelblue”,
add_diagonal = TRUE,
add_axes_lines = TRUE,
title = "Low-frequency vs Non-low-frequency Similarity”,
show_labels = FALSE,
show_names = FALSE

)

Arguments
similarity_results

point_size
point_color
add_diagonal
add_axes_lines
title
show_labels

show_names

Value

List of similarity results from runSGCC function, or a single result
Size of points in the plot (default: 2)

Color of points (default: "steelblue")

Whether to add diagonal reference lines (default: TRUE)

Whether to add x=0 and y=0 reference lines (default: TRUE)

Plot title (default: "Low-frequency vs Non-low-frequency Similarity")
Whether to show point labels if names are available (default: FALSE)

Whether to display data point names as text labels using ggrepel (default: FALSE).
If more than 50 points, randomly samples 50 for labeling. Requires ggrepel
package.

ggplot object showing similarity space visualization

Examples

Create example data and compute SGWT
data <- data.frame(x = runif(100), y = runif(100),

signall = rnorm(100), signal2 = rnorm(100))

SG <- initSGWT(data, signals = c("signall”, "signal2"))
SG <- runSpecGraph(SG, k = 15)
SG <~ runSGWT(SG)

Single similarity result
sim_result <- runSGCC("signall"”, "signal2", SG = SG)
plot <- visualize_similarity_xy(sim_result)

print(plot)

Multiple similarity results (create two different analyses)
data2 <- data.frame(x = runif(100), y = runif(100),

signall = rnorm(100), signal2 = rnorm(100))

SG2 <- initSGWT(data2, signals = c("signall”, "signal2"))

36 visualize_stripe_patterns

SG2 <- runSpecGraph(SG2, k = 15)
SG2 <- runSGWT(SG2)

sim_results <- list(

pair1l = runSGCC("signall”, "signal2", SG = SG),

pair2 = runSGCC("signall”, "signal2", SG = SG2)
)
plot <- visualize_similarity_xy(sim_results, show_names = TRUE)
print(plot)

visualize_stripe_patterns
Visualize Stripe Pattern Simulation Results

Description

Create visualization plots for stripe pattern simulation results

Usage

visualize_stripe_patterns(
sim_data,
gap_seq,
width_seq,
theta_seq,
bg_color = "grey”,
signall_color = "#1f6f8b",
signal2_color = "#e67e22",
overlap_color = "#7a4dbf",
show_title = TRUE

)
Arguments
sim_data Output from simulate_stripe_patterns function
gap_seq Vector of gap values used in simulation
width_seq Vector of width values used in simulation
theta_seq Vector of theta (rotation angle) values used in simulation
bg_color Background color for plots (default: "grey")

signall_color Color for signal 1 (default: "#1{f6f8b")

signal2_color Color for signal 2 (default: "#e67e22")

overlap_color Color for overlapping regions (default: "#7a4dbf")

show_title Logical; if TRUE (default), add titles to plots with parameter values

visualize_stripe_patterns

Value

Combined ggplot object with all pattern visualizations

Examples

Generate and visualize patterns
sim_data <- simulate_stripe_patterns(
grid_size = 80,
gap_seq = c(10, 20),
width_seq = c(5, 10, 20),
theta_seq = c(@, 30, 60)
)
plot_grid <- visualize_stripe_patterns(sim_data,
gap_seq = c(10, 20),
width_seq = c(5, 10, 20),
theta_seq = c(0, 30, 60))
print(plot_grid)

37

Index

x+ CODEX
codex_toy_data, 6
* SGWT
codex_toy_data, 6
* biological-data
BioGSP-package, 3
+ datasets
codex_toy_data, 6
+ graph-theory
BioGSP-package, 3
+ package
BioGSP-package, 3
* spatial-analysis
BioGSP-package, 3
* spatial
codex_toy_data, 6
* wavelets
BioGSP-package, 3
_PACKAGE (BioGSP-package), 3

BioGSP-package, 3
cal_laplacian, 4
checkKband, 5
codex_toy_data, 6
compare_kernel_families, 9
compute_sgwt_filters, 10
cosine_similarity, 10

demo_sgwt, 3, 11

FastDecompositionLap, 12
find_knee_point, 13

gft, 13
hello_sgwt, 14

igft, 14
initSGWT, 3, 15

38

plot_FM, 16
plot_sgwt_decomposition, 3, 17
print.SGWT, 17

runSGCC, 3, 18
runSGWT, 3, 19
runSpecGraph, 3, 20

sgwt_auto_scales, 21
sgwt_energy_analysis, 3, 22
sgwt_forward, 3, 22
sgwt_get_kernels, 24
sgwt_inverse, 3, 24
simulate_checkerboard, 25
simulate_moving_circles, 26
simulate_multiscale, 27
simulate_multiscale_overlap, 28
simulate_stripe_patterns, 29

visualize_checkerboard, 30
visualize_moving_circles, 31
visualize_multiscale, 32
visualize_sgwt_kernels, 33
visualize_similarity_xy, 34
visualize_stripe_patterns, 36

	BioGSP-package
	cal_laplacian
	checkKband
	codex_toy_data
	compare_kernel_families
	compute_sgwt_filters
	cosine_similarity
	demo_sgwt
	FastDecompositionLap
	find_knee_point
	gft
	hello_sgwt
	igft
	initSGWT
	plot_FM
	plot_sgwt_decomposition
	print.SGWT
	runSGCC
	runSGWT
	runSpecGraph
	sgwt_auto_scales
	sgwt_energy_analysis
	sgwt_forward
	sgwt_get_kernels
	sgwt_inverse
	simulate_checkerboard
	simulate_moving_circles
	simulate_multiscale
	simulate_multiscale_overlap
	simulate_stripe_patterns
	visualize_checkerboard
	visualize_moving_circles
	visualize_multiscale
	visualize_sgwt_kernels
	visualize_similarity_xy
	visualize_stripe_patterns
	Index

