
Package ‘BFI’
May 24, 2025

Type Package

Title Bayesian Federated Inference

Version 3.1.0

Date/Publication 2025-05-24 21:50:06 UTC

Author Hassan Pazira [aut, cre] (ORCID:
<https://orcid.org/0000-0002-4266-6877>),

Emanuele Massa [aut] (ORCID: <https://orcid.org/0000-0001-5715-2572>),
Marianne A. Jonker [aut] (ORCID:

<https://orcid.org/0000-0003-0134-8482>)

Maintainer Hassan Pazira <hassan.pazira@radboudumc.nl>

Description The Bayesian Federated Inference ('BFI') method combines inference results ob-
tained from local data sets in the separate centers. In this version of the pack-
age, the 'BFI' methodology is programmed for linear, logistic and survival regression mod-
els. For GLMs, see Jonker, Pazira and Coolen (2024) <doi:10.1002/sim.10072>; for sur-
vival models, see Pazira, Massa, Wei-
jers, Coolen and Jonker (2025) <doi:10.48550/arXiv.2404.17464>; and for heterogeneous popu-
lations, see Jonker, Pazira and Coolen (2025) <doi:10.1017/rsm.2025.6>.

License MIT + file LICENSE

URL https://hassanpazira.github.io/BFI/

Encoding UTF-8

Suggests knitr, rmarkdown, roxygen2, devtools, spelling, testthat (>=
3.0.0)

VignetteBuilder knitr

Depends R (>= 3.5.0)

LazyData true

Imports stats

Config/testthat/edition 3

RoxygenNote 7.3.2

Language en-US

NeedsCompilation no

Repository CRAN

1

https://orcid.org/0000-0002-4266-6877
https://orcid.org/0000-0001-5715-2572
https://orcid.org/0000-0003-0134-8482
https://doi.org/10.1002/sim.10072
https://doi.org/10.48550/arXiv.2404.17464
https://doi.org/10.1017/rsm.2025.6
https://hassanpazira.github.io/BFI/

2 BFI-package

Contents

BFI-package . 2
b.diag . 3
bfi . 4
hazards.fun . 21
inv.prior.cov . 24
MAP.estimation . 29
n.par . 39
Nurses . 40
summary.bfi . 41
surv.simulate . 43
trauma . 47

Index 48

BFI-package Bayesian Federated Inference

Description

The Bayesian Federated Inference method combines inference results from different (medical) cen-
ters without sharing the data. In this version of the package, the user can fit models specifying
Gaussian, Binomial (Logistic) and Survival families.

Details

Package: BFI
Type: Package
Version: 3.1.0
Date/Publication: 2024-04-27
License: GPL (>=2)

MAP.estimation and bfi are the main functions. All other functions are utility functions.

Some examples are provided in the vignettes accompanying this package in order to show how
the package can be applied to real data. The vignettes can be found on the package website at
https://hassanpazira.github.io/BFI/ or within R once the package has been installed, e.g.,
via vignette("BFI", package = "BFI").

Author(s)

Hassan Pazira, Emanuele Massa, Marianne A. Jonker
Maintainer: Hassan Pazira <hassan.pazira@radboudumc.nl>

https://hassanpazira.github.io/BFI/

b.diag 3

References

Jonker M.A., Pazira H. and Coolen A.C.C. (2024). Bayesian federated inference for estimating
statistical models based on non-shared multicenter data sets, Statistics in Medicine, 43(12): 2421-
2438. <https://doi.org/10.1002/sim.10072>

Pazira H., Massa E., Weijers J.A.M., Coolen A.C.C. and Jonker M.A. (2025b). Bayesian Federated
Inference for Survival Models, Journal of Applied Statistics (Accepted). <https://arxiv.org/abs/2404.17464>

Jonker M.A., Pazira H. and Coolen A.C.C. (2025a). Bayesian Federated Inference for regression
models based on non-shared medical center data, Research Synthesis Methods, 1-41. <https://doi.org/10.1017/rsm.2025.6>

b.diag Create a Block Diagonal Matrix

Description

Construct a block diagonal matrix using multiple given block matrices.

Usage

b.diag(..., fill = 0)

Arguments

... individual matrices or one list of matrices.

fill non-block-diagonal elements. Default is 0.

Details

Avoid combining matrices and lists for the ... argument.

b.diag() covers the arguments of type "character".

If a sparse matrix needed, run the following:

library(Matrix); Matrix(b_diag, sparse = TRUE)

where b_diag is the matrix returned by b.diag().

Value

b.diag() returns a block diagonal matrix obtained by combining the arguments.

Author(s)

Hassan Pazira
Maintainer: Hassan Pazira <hassan.pazira@radboudumc.nl>

4 bfi

Examples

b.diag(1, matrix(1:3, 3,4), diag(3:2))

b.diag(matrix(1:6, 2), as.character(2))

lists <- list(1, 2:3, diag(4:6), 7, cbind(8,9:12), 13:15)
b.diag(lists)
identical(b.diag(lists), b.diag(lapply(lists, as.matrix)))

b.diag(replicate(3, matrix(round(rnorm(9)), 3, 3), simplify=FALSE))

bfi Bayesian Federated Inference

Description

bfi function can be used (on the central server) to combine inference results from separate datasets
(without combining the data) to approximate what would have been inferred had the datasets been
merged. This function can handle linear, logistic and survival regression models.

Usage

bfi(theta_hats = NULL,
A_hats,
Lambda,
family = c("gaussian", "binomial", "survival"),
basehaz = c("weibul", "exp", "gomp", "poly", "pwexp", "unspecified"),
stratified = FALSE,
strat_par = NULL,
center_spec = NULL,
theta_A_polys = NULL,
treat_round = NULL,
for_ATE = NULL,
p,
q_ls,
center_zero_sample = FALSE,
which_cent_zeros,
zero_sample_covs,
refer_cats,
zero_cats,
lev_no_ref_zeros)

Arguments

theta_hats a list of L vectors of the maximum a posteriori (MAP) estimates of the model
parameters in the L centers. These vectors must have equal dimensions. See
‘Details’.

bfi 5

A_hats a list of L minus curvature matrices for L centers. These matrices must have
equal dimensions. See ‘Details’.

Lambda a list of L+ 1 matrices. The k matrix is the chosen inverse variance-covariance
matrix of the Gaussian distribution that is used as prior distribution in center k,
where k = 1, 2, . . . , L. The last matrix is the chosen variance-covariance matrix
for the Gaussian prior of the (fictive) combined data set. If stratified = FALSE,
all L + 1 matrices must have equal dimensions. While, if stratified = TRUE,
the first L matrices must have equal dimensions and the last matrix should have
a different (greater) dimention than the others. See ‘Details’.

family a character string representing the family name used for the local centers. Can
be abbreviated.

basehaz a character string representing one of the available baseline hazard functions;
exponential ("exp"), Weibull ("weibul", the default), Gompertz ("gomp"),
exponentiated polynomial ("poly"), piecewise exponential ("pwexp"), and
unspecified baseline hazard ("unspecified"). It is only used when family
= "survival". Can be abbreviated. If basehaz = "unspecified", it means that
a (semi-parametric) Cox model is considered, and the parameters (regression co-
efficients) are estimated using the partial log-likelihood.

stratified logical flag for performing the stratified analysis. If stratified = TRUE, the
parameter(s) selected in the strat_par argument are allowed to be different
across centers (to deal with heterogeneity across centers), except when the argu-
ment center_spec is not NULL. Default is stratified = FALSE. See ‘Details’
and ‘Examples’.

strat_par an integer vector for indicating the stratification parameter(s). It can be used to
deal with heterogeneity due to center-specific parameters. For the "binomial"
and "gaussian" families it is a one- or two-element integer vector so that the
values 1 and/or 2 are/is used to indicate that the “intercept” and/or “sigma2”
are allowed to vary, respectively. For the "binomial" family the length of
the vector should be at most one which refers to “intercept”, and the value of
this element should be 1 (to handel heterogeneity across outcome means). For
"gaussian" this vector can be 1 for indicating the “intercept” only (handel-
ing heterogeneity across outcome means), 2 for indicating the “sigma2” only
(handeling heterogeneity due to nuisance parameter), and c(1, 2) for both “in-
tercept” and “sigma2”. When family = "survival", this vector can contain
any combination of values ranging from 1 to the maximum number of param-
eters of the baseline hazard function, i.e., 1 for "exp", 2 for "weibul" and
"gomp", max_order + 1 for "poly", and n_intervals for "pwexp". For ex-
ample, for "weibul", strat_par could be 1, 2 or c(1, 2), where 1 represents ω1

and 2 represents ω2. This argument is used only when stratified = TRUE and
center_spec = NULL. Default is strat_par = NULL. See ‘Details’ and ‘Exam-
ples’.

center_spec a vector of L elements to account for the heterogeneity across centers due to
clustering. This argument is used only when stratified = TRUE and strat_par
= NULL. Each element represents a specific feature of the corresponding center.
There must be only one specific value or attribute for each center. This vector
could be a numeric, characteristic or factor vector. Note that, the order of the

6 bfi

centers in the vector center_spec must be the same as in the list of the argu-
ment theta_hats. The used data type in the argument center_spec must be
categorical. Default is center_spec = NULL. See also ‘Details’ and ‘Examples’.

theta_A_polys a list with L elements so that each element is the array theta_A_ploy (the output
of the MAP.estimation function, MAP.estimation()$theta_A_ploy) for the
corresponding center. This argument, theta_A_polys, is only used if family =
"survival" and basehaz = "poly". See ‘Details’ and ‘Examples’.

treat_round a character string representing the "first" and "second" rounds of estimating
the treatment effect.

for_ATE a list of L vectors of 9 elements to calculate the average treatment effects (ATEs)
only for the binomial and gaussian families. These vectors must have equal di-
mensions. If treat_round = "first", then for_ATE must be NULL. If treat_round
= "second", then for_ATE must be a list for binomial and gaussian, while
for survival, for_ATE must be NULL. It should be defined using the output of
MAP.estimation()$for_ATE obtained from the first round. See ‘Details’ and
‘Examples’.

p an integer representing the number of covariates/coefficients. It can be found
from the output of the MAP.estimation function, MAP.estimation()$np). This
argument, p, is only used if stratified = TRUE and family = "survival".

q_ls a vector with L elements in which each element is the order (minus 1) of the ex-
ponentiated polynomial baseline hazard function for the corresponding center,
i.e., each element is the value of q_l (the output of the MAP.estimation func-
tion, MAP.estimation()$q_l). This argument, q_ls, is only used if family
= "survival", family = "survival" and basehaz = "poly". It can also be a
scalar which represents the maximum value of the q_l’s across the centers.

center_zero_sample

logical flag indicating whether the center has a categorical covariate with no ob-
servations/individuals in one of the categories. It is used to address heterogene-
ity across centers due to center-specific covariates. Default is center_zero_sample
= FALSE. For more detailes see ‘References’.

which_cent_zeros

an integer vector representing the center(s) which has one categorical covariate
with no individuals in one of the categories. It is used if center_zero_sample
= TRUE.

zero_sample_covs

a vector in which each element is a character string representing the categorical
covariate that has no samples/observations in one of its categories for the cor-
responding center. Each element of the vector can be obtained from the output of
the MAP.estimation function for the corresponding center, MAP.estimation()$zero_sample_cov.
It is used when center_zero_sample = TRUE.

refer_cats a vector in which each element is a character string representing the refer-
ence category for the corresponding center. Each element of the vector can
be obtained from the output of the MAP.estimation function for the corre-
sponding center, MAP.estimation()$refer_cat. This vector is used when
center_zero_sample = TRUE.

zero_cats a vector in which each element is a character string representing the category
with no samples/observations for the corresponding center. Each element of

bfi 7

the vector can be obtained from the output of the MAP.estimation function for
the corresponding center, i.e., MAP.estimation()$zero_cat. It is used when
center_zero_sample = TRUE.

lev_no_ref_zeros

a list in which the number of elements equals the length of the which_cent_zeros
argument. Each element of the list is a vector containing the names of the levels
of the categorical covariate that has no samples/observations in one of its cate-
gories for the corresponding center. However, the name of the category with no
samples and the name of the reference category are excluded from this vector.
Each element of the list can be obtained from the output of the MAP.estimation
function, i.e., MAP.estimation()$lev_no_ref_zero. This argument is used if
center_zero_sample = TRUE.

Details

bfi function implements the BFI approach described in the papers Jonker et. al. (2024a), Pazira et.
al. (2024) and Jonker et. al. (2024b) given in the references. The inference results gathered from
different (L) centers are combined, and the BFI estimates of the model parameters and curvature
matrix evaluated at that point are returned.

The inference result from each center must be obtained using the MAP.estimation function sepa-
rately, and then all of these results (coming from different centers) should be compiled into a list
to be used as an input of bfi(). The models in the different centers should be defined in exactly
the same way; among others, exactly the same covariates should be included in the models. The
parameter vectors should be defined exactly the same, so that the L vectors and matrices in the input
lists theta_hat’s and A_hat’s are defined in the same way (e.g., the covariates need to be included
in the models in the same order).

Note that the order of the elements in the lists theta_hats, A_hats and Lambda, must be the same
with respect to the centers, so that in every list the element at the ℓ position is from the center ℓ.
This should also be the case for the vector center_spec.

If for the locations intercept = FALSE, the stratified analysis is not possible anymore for the
binomial family.

If stratified = FALSE, both strat_par and center_spec must be NULL (the defaults), while if
stratified = TRUE only one of the two must be NULL.

If stratified = FALSE and all the L + 1 matrices in Lambda are equal, it is sufficient to give a
(list of) one matrix only. In both cases of the stratified argument (TRUE or FALSE), if only the
first L matrices are equal, the argument Lambda can be a list of two matrices, so that the fist matrix
represents the chosen variance-covariance matrix for local centers and the second one is the chosen
matrix for the combined data set. The last matrix of the list in the argument Lambda can be built by
the function inv.prior.cov().

If the data type used in the argument center_spec is continuous or categorical with the number
of categories equal to the number of centers, one can use stratified = TRUE and center_spec =
NULL, and set strat_par not to NULL (i.e., to 1, 2 or both (1, 2)). Indeed, in this case, the stratifica-
tion parameter(s) given in the argument strat_par are assumed to be different across the centers.

When family = 'survival' and basehaz = 'poly', the arguments theta_hats and A_hats should
not be provided. Instead, the theta_A_polys and q_ls arguments should be defined using the
local information, specifically MAP.estimation()$theta_A_poly and MAP.estimation()$q_l,
respectively. See Example 3 in ‘Examples’.

8 bfi

For estimating the treatment effect, in the first round (treat_round = "first"), the argument
for_ATE must be NULL (the default) and the family must be set to binomial (family is handled
automatically.)

Value

bfi returns a list containing the following components:

theta_hat the vector of estimates obtained by combining the inference results from the L
centers with the 'BFI' methodology. If an intercept was fitted in every cen-
ter and stratified = FALSE, there is only one general “intercept” in this vec-
tor, while if stratified = TRUE and strat_par = 1, there are L different in-
tercepts in the model, for each center one. If treatment is not ’NULL’, when
treat_round = 'first', theta_hat gives γ̂BFI , and when treat_round =

'second', theta_hat is the treatment effect ζ̂BFI ;
A_hat minus the curvature (or Hessian) matrix obtained by the 'BFI' method for the

combined model. If stratified = TRUE, the dimension of the matrix is always
greater than when stratified = FALSE;

sd the vector of (posterior) standard deviation of the estimates in theta_hat ob-
tained from the matrix in A_hat, i.e., the vector equals sqrt(diag(solve(A_hat)))
which equals the square root of the elements at the diagonal of the inverse of the
A_hat matrix.

family the family object used;
basehaz the baseline hazard function used;
stratified whether a stratified analysis was done or not;
strat_par the stratification parameter(s) used;
Ave_Treat the estimates of the average treatment effect. Two diffterent estimations (IPTW

and wIPTW) if the family is gaussian or binomial, and for the survival
family it is ’NULL’. For more detailes see ‘References’.

Author(s)

Hassan Pazira and Marianne Jonker
Maintainer: Hassan Pazira <hassan.pazira@radboudumc.nl>

References

Jonker M.A., Pazira H. and Coolen A.C.C. (2024a). Bayesian federated inference for estimating
statistical models based on non-shared multicenter data sets, Statistics in Medicine, 43(12): 2421-
2438. <https://doi.org/10.1002/sim.10072>

Pazira H., Massa E., Weijers J.A.M., Coolen A.C.C. and Jonker M.A. (2025b). Bayesian Federated
Inference for Survival Models, Journal of Applied Statistics (Accepted). <https://arxiv.org/abs/2404.17464>

Jonker M.A., Pazira H. and Coolen A.C.C. (2025a). Bayesian Federated Inference for regression
models based on non-shared medical center data, Research Synthesis Methods, 1-41. <https://doi.org/10.1017/rsm.2025.6>

See Also

MAP.estimation and inv.prior.cov

bfi 9

Examples

###
Example 1: y ~ Binomial (L = 2 centers)
###

Setting a seed for reproducibility
set.seed(112358)

#------------------------------------#
Data Simulation for Local Center 1
#------------------------------------#
n1 <- 30 # sample size of center 1
X1 <- data.frame(x1=rnorm(n1), # continuous variable

x2=sample(0:2, n1, replace=TRUE)) # categorical variable
make dummy variables
X1x2_1 <- ifelse(X1$x2 == '1', 1, 0)
X1x2_2 <- ifelse(X1$x2 == '2', 1, 0)
X1$x2 <- as.factor(X1$x2)
regression coefficients
beta <- 1:4 # beta[1] is the intercept
linear predictor:
eta1 <- beta[1] + X1$x1 * beta[2] + X1x2_1 * beta[3] + X1x2_2 * beta[4]
inverse of the link function (g^{-1}(\eta) = \mu):
mu1 <- binomial()$linkinv(eta1)
y1 <- rbinom(n1, 1, mu1)

#------------------------------------#
Data Simulation for Local Center 2
#------------------------------------#
n2 <- 50 # sample size of center 2
X2 <- data.frame(x1=rnorm(n2), # continuous variable

x2=sample(0:2, n2, replace=TRUE)) # categorical variable
make dummy variables:
X2x2_1 <- ifelse(X2$x2 == '1', 1, 0)
X2x2_2 <- ifelse(X2$x2 == '2', 1, 0)
X2$x2 <- as.factor(X2$x2)
linear predictor:
eta2 <- beta[1] + X2$x1 * beta[2] + X2x2_1 * beta[3] + X2x2_2 * beta[4]
inverse of the link function:
mu2 <- binomial()$linkinv(eta2)
y2 <- rbinom(n2, 1, mu2)

#---------------------------#
MAP Estimates at Center 1
#---------------------------#
Assume the same inverse covariance matrix (Lambda) for both centers:
Lambda <- inv.prior.cov(X1, lambda = 0.01, family = 'binomial')
fit1 <- MAP.estimation(y1, X1, family = 'binomial', Lambda)
theta_hat1 <- fit1$theta_hat # intercept and coefficient estimates
A_hat1 <- fit1$A_hat # minus the curvature matrix

#---------------------------#

10 bfi

MAP Estimates at Center 2
#---------------------------#
fit2 <- MAP.estimation(y2, X2, family='binomial', Lambda)
theta_hat2 <- fit2$theta_hat
A_hat2 <- fit2$A_hat

#-----------------------#
BFI at Central Server
#-----------------------#
theta_hats <- list(theta_hat1, theta_hat2)
A_hats <- list(A_hat1, A_hat2)
bfi <- bfi(theta_hats, A_hats, Lambda, family='binomial')
class(bfi)
summary(bfi, cur_mat=TRUE)

###---------------------###
Stratified Analysis
###---------------------###

By running the following line an error appears because
when stratified = TRUE, both 'strat_par' and 'center_spec' can not be NULL:
Just4check1 <- try(bfi(theta_hats, A_hats, Lambda, family = 'binomial',

stratified = TRUE), TRUE)
class(Just4check1) # By default, both 'strat_par' and 'center_spec' are NULL!

By running the following line an error appears because when stratified = TRUE,
last matrix in 'Lambda' should not have the same dim. as the other local matrices:
Just4check2 <- try(bfi(theta_hats, A_hats, Lambda, stratified = TRUE,

strat_par = 1), TRUE)
class(Just4check2) # All matices in Lambda have the same dimension!

Stratified analysis when 'intercept' varies across two centers:
newLam <- inv.prior.cov(X1, lambda=c(0.1, 0.3), family = 'binomial',

stratified = TRUE, strat_par = 1)
bfi <- bfi(theta_hats, A_hats, list(Lambda, newLam), family = 'binomial',

stratified=TRUE, strat_par=1)
summary(bfi, cur_mat=TRUE)

###---------------------###
Treatment Effect
###---------------------###

set.seed(112358)

#------------------------------------#
Data Simulation for Local Center 1
#------------------------------------#
n1 <- 30 # sample size of center 1
X1 <- data.frame(x1=rnorm(n1), # continuous variable

treatment=sample(1:2, n1, replace=TRUE)) # categorical variable
X1$treatment <- as.factor(X1$treatment)

bfi 11

regression coefficients
beta <- 1:3 # beta[1] is the intercept
make dummy variable
X1x2_2 <- ifelse(X1$treatment == '2', 1, 0)
linear predictor:
eta1 <- beta[1] + X1$x1 * beta[2] + X1x2_2 * beta[3]
inverse of the link function (g^{-1}(\eta) = \mu):
mu1 <- binomial()$linkinv(eta1)
y1 <- rbinom(n1, 1, mu1)

#------------------------------------#
Data Simulation for Local Center 2
#------------------------------------#
n2 <- 50 # sample size of center 2
X2 <- data.frame(x1=rnorm(n2), # continuous variable

treatment=sample(1:2, n2, replace=TRUE)) # categorical variable
X2$treatment <- as.factor(X2$treatment)
make dummy variables:
X2x2_2 <- ifelse(X2$treatment == '2', 1, 0)
linear predictor:
eta2 <- beta[1] + X2$x1 * beta[2] + X2x2_2 * beta[3]
inverse of the link function:
mu2 <- binomial()$linkinv(eta2)
y2 <- rbinom(n2, 1, mu2)

The algorithm works even if the order of the covariates are not
the same across centers
X2 <- X2[,c("treatment","x1")]

#-----------------------#
Observational data
#-----------------------#

For observational data (RWD), we need two rounds for estimating treatment effect:

#-------------#
First Round
#-------------#

Center 1:
Lambda1 <- inv.prior.cov(X1, lambda = 0.01, family = 'binomial',

treatment = "treatment", treat_round="first")
fit1_r1 <- MAP.estimation(y1, X1, family = 'binomial', Lambda = Lambda1,

treatment = "treatment", treat_round = "first")
In the first round, the output is without the treatment!
summary(fit1_r1)

Center 2:
Lambda2 <- inv.prior.cov(X2, lambda = 0.01, family = 'binomial',

treatment = "treatment", treat_round="first")
fit2_r1 <- MAP.estimation(y2, X2, family = 'binomial', Lambda = Lambda2,

treatment = "treatment", treat_round = "first")
fit2_r1

12 bfi

Centeral Server:
theta_hats_r1 <- list(fit1_r1$theta_hat, fit2_r1$theta_hat)
A_hats_r1 <- list(fit1_r1$A_hat, fit2_r1$A_hat)
fitbfi_r1 <- bfi(theta_hats_r1, A_hats_r1, Lambda1, family = 'binomial',

treat_round = "first")
summary(fitbfi_r1, cur_mat = TRUE)

#--------------#
Second Round
#--------------#

Center 1:
Lambda11 <- inv.prior.cov(X1, lambda = 0.01, family = 'binomial',

treatment = "treatment", treat_round="second")
fit1_r2 <- MAP.estimation(y1, X1, family = 'binomial', Lambda = Lambda11,

treatment = "treatment", treat_round = "second",
gamma_bfi = fitbfi_r1$theta_hat)

In the second round, the output is only with the treatment!
summary(fit1_r2)

Center 2:
Lambda22 <- inv.prior.cov(X2, lambda = 0.01, family = 'binomial',

treatment = "treatment", treat_round="second")
fit2_r2 <- MAP.estimation(y2, X2, family = 'binomial', Lambda = Lambda22,

treatment = "treatment", treat_round = "second",
gamma_bfi = fitbfi_r1$theta_hat)

fit2_r2$propensity # Propensity Score
fit2_r2$for_ATE # will be used in central server
fit2_r2

Centeral Server:
theta_hats_r2 <- list(fit1_r2$theta_hat, fit2_r2$theta_hat)
A_hats_r2 <- list(fit1_r2$A_hat, fit2_r2$A_hat)
for_ATEs <- list(fit1_r2$for_ATE, fit2_r2$for_ATE)
fitbfi_r2 <- bfi(theta_hats_r2, A_hats_r2, Lambda11, family = 'binomial',

treat_round = "second", for_ATE = for_ATEs)
fitbfi_r2$S_var
fitbfi_r2$Ave_Treat
summary(fitbfi_r2)

#--------------------#
Randomized Trial
#--------------------#

For Randomized Control Trial (RCT), we need only one round (the second round) for
estimating treatment effect. Because we do not need to estimate propensity score.
For example, in a 1:1 randomized trial, the propensity scores are, by definition,
equal to 0.5. Here we use 'RCT_propens', instead of 'gamma_bfi':

Center 1:
Lambda11 <- inv.prior.cov(X1, lambda = 0.01, family = 'binomial',

treatment = "treatment", treat_round="second")

bfi 13

fit1_r2 <- MAP.estimation(y1, X1, family = 'binomial', Lambda = Lambda11,
treatment = "treatment", treat_round = "second",
RCT_propens = rep(0.5, n1)) # gamma_bfi = NULL

summary(fit1_r2)

Center 2:
Lambda22 <- inv.prior.cov(X2, lambda = 0.01, family = 'binomial',

treatment = "treatment", treat_round="second")
fit2_r2 <- MAP.estimation(y2, X2, family = 'binomial', Lambda = Lambda22,

treatment = "treatment", treat_round = "second",
RCT_propens = rep(0.5, n2)) # gamma_bfi = NULL

fit2_r2$for_ATE # will be used in central server
fit2_r2

Centeral Server:
theta_hats_r2 <- list(fit1_r2$theta_hat, fit2_r2$theta_hat)
A_hats_r2 <- list(fit1_r2$A_hat, fit2_r2$A_hat)
for_ATEs <- list(fit1_r2$for_ATE, fit2_r2$for_ATE)
fitbfi_r2 <- bfi(theta_hats_r2, A_hats_r2, Lambda11, family = 'binomial',

treat_round = "second", for_ATE = for_ATEs)
fitbfi_r2$S_var
fitbfi_r2$Ave_Treat
summary(fitbfi_r2)

###
Example 2: y ~ Gaussian (L = 3 centers)
###

Setting a seed for reproducibility
set.seed(112358)

p <- 3 # number of coefficients without 'intercept'
theta <- c(1, rep(2, p), 1.5) # reg. coef.s ('intercept' is 1) & 'sigma2' = 1.5

#------------------------------------#
Data Simulation for Local Center 1
#------------------------------------#
n1 <- 30 # sample size of center 1
X1 <- data.frame(matrix(rnorm(n1 * p), n1, p)) # continuous variables
linear predictor:
eta1 <- theta[1] + as.matrix(X1)
inverse of the link function (g^{-1}(\eta) = \mu):
mu1 <- gaussian()$linkinv(eta1)
y1 <- rnorm(n1, mu1, sd = sqrt(theta[5]))

#------------------------------------#
Data Simulation for Local Center 2
#------------------------------------#
n2 <- 40 # sample size of center 2
X2 <- data.frame(matrix(rnorm(n2 * p), n2, p)) # continuous variables
linear predictor:
eta2 <- theta[1] + as.matrix(X2)

14 bfi

inverse of the link function:
mu2 <- gaussian()$linkinv(eta2)
y2 <- rnorm(n2, mu2, sd = sqrt(theta[5]))

#------------------------------------#
Data Simulation for Local Center 3
#------------------------------------#
n3 <- 50 # sample size of center 3
X3 <- data.frame(matrix(rnorm(n3 * p), n3, p)) # continuous variables
linear predictor:
eta3 <- theta[1] + as.matrix(X3)
inverse of the link function:
mu3 <- gaussian()$linkinv(eta3)
y3 <- rnorm(n3, mu3, sd = sqrt(theta[5]))

#---------------------------#
Inverse Covariance Matrix
#---------------------------#
Creating the inverse covariance matrix for the Gaussian prior distribution:
the same for both centers
Lambda <- inv.prior.cov(X1, lambda = 0.05, family='gaussian')

#---------------------------#
MAP Estimates at Center 1
#---------------------------#
fit1 <- MAP.estimation(y1, X1, family = 'gaussian', Lambda)
theta_hat1 <- fit1$theta_hat # intercept and coefficient estimates
A_hat1 <- fit1$A_hat # minus the curvature matrix

#---------------------------#
MAP Estimates at Center 2
#---------------------------#
fit2 <- MAP.estimation(y2, X2, family = 'gaussian', Lambda)
theta_hat2 <- fit2$theta_hat
A_hat2 <- fit2$A_hat

#---------------------------#
MAP Estimates at Center 3
#---------------------------#
fit3 <- MAP.estimation(y3, X3, family = 'gaussian', Lambda)
theta_hat3 <- fit3$theta_hat
A_hat3 <- fit3$A_hat

#-----------------------#
BFI at Central Server
#-----------------------#
A_hats <- list(A_hat1, A_hat2, A_hat3)
theta_hats <- list(theta_hat1, theta_hat2, theta_hat3)
bfi <- bfi(theta_hats, A_hats, Lambda, family = 'gaussian')
summary(bfi, cur_mat=TRUE)

###---------------------###
Stratified Analysis

bfi 15

###---------------------###

Stratified analysis when 'intercept' varies across two centers:
newLam1 <- inv.prior.cov(X1, lambda = c(0.1,0.3), family = 'gaussian',

stratified = TRUE, strat_par = 1, L = 3)
'newLam1' is used as the prior for combined data and
'Lambda' is used as the prior for locals
list_newLam1 <- list(Lambda, newLam1)
bfi1 <- bfi(theta_hats, A_hats, list_newLam1, family = 'gaussian',

stratified = TRUE, strat_par = 1)
summary(bfi1, cur_mat = TRUE)

Stratified analysis when 'sigma2' varies across two centers:
newLam2 <- inv.prior.cov(X1, lambda = c(0.1,0.3), family = 'gaussian',

stratified = TRUE, strat_par = 2, L = 3)
'newLam2' is used as the prior for combined data and 'Lambda' is used as
the prior for locals
list_newLam2 <- list(Lambda, newLam2)
bfi2 <- bfi(theta_hats, A_hats, list_newLam2, family = 'gaussian',

stratified = TRUE, strat_par=2)
summary(bfi2, cur_mat = TRUE)

Stratified analysis when 'intercept' and 'sigma2' vary across 2 centers:
newLam3 <- inv.prior.cov(X1, lambda = c(0.1,0.2,0.3), family = 'gaussian',

stratified = TRUE, strat_par = c(1, 2), L = 3)
'newLam3' is used as the prior for combined data and 'Lambda' is used as
the prior for locals
list_newLam3 <- list(Lambda, newLam3)
bfi3 <- bfi(theta_hats, A_hats, list_newLam3, family = 'gaussian',

stratified = TRUE, strat_par = 1:2)
summary(bfi3, cur_mat = TRUE)

###----------------------------###
Center Specific Covariates
###----------------------------###

Assume the first and third centers have the same center-specific covariate value
of 'High', while this value for the second center is 'Low', i.e.,
center_spec = c('High','Low','High')
newLam4 <- inv.prior.cov(X1, lambda=c(0.1, 0.2, 0.3), family='gaussian',

stratified = TRUE, center_spec = c('High','Low','High'),
L = 3)

'newLam4' is used as the prior for combined data and 'Lambda' is used as
the prior for locals
l_newLam4 <- list(Lambda, newLam4)
bfi4 <- bfi(theta_hats, A_hats, l_newLam4, family = 'gaussian',

stratified = TRUE, center_spec = c('High','Low','High'))
summary(bfi4, cur_mat = TRUE)

###---------------------###
Treatment Effect
###---------------------###

16 bfi

set.seed(112358)

#-----------------------------#
New Data for Local Center 1
#-----------------------------#
Generating new data with 'treatment' variable
We cansider the first variable (X1$X1) to be the treatment:
X1$X1 <- sample(0:1, n1, replace=TRUE) # categorical variable
eta1 <- theta[1] + as.matrix(X1)
mu1 <- gaussian()$linkinv(eta1)
y1 <- rnorm(n1, mu1, sd = sqrt(theta[5]))

#-----------------------------#
New Data for Local Center 2
#-----------------------------#
We cansider the first variable (X2$X1) to be the treatment:
X2$X1 <- sample(0:1, n2, replace=TRUE) # categorical variable
eta2 <- theta[1] + as.matrix(X2)
mu2 <- gaussian()$linkinv(eta2)
y2 <- rnorm(n2, mu2, sd = sqrt(theta[5]))

#-----------------------------#
New Data for Local Center 3
#-----------------------------#
We cansider the first variable (X3$X1) to be the treatment:
X3$X1 <- sample(0:1, n3, replace=TRUE) # categorical variable
linear predictor:
eta3 <- theta[1] + as.matrix(X3)
inverse of the link function:
mu3 <- gaussian()$linkinv(eta3)
y3 <- rnorm(n3, mu3, sd = sqrt(theta[5]))

#-----------------------#
Observational data
#-----------------------#

For observational data (RWD), we need two rounds for estimating treatment effect:

#-------------#
First Round
#-------------#

Center 1:
Lambda1 <- inv.prior.cov(X1, lambda = 0.01, family = 'binomial',

treatment = "X1", treat_round="first")
When treat_round = "first", the family will automatically set to 'binomial',
even if family = 'gaussian' or family = 'survival'.
fit1_r1 <- MAP.estimation(y1, X1, family = 'gaussian', Lambda = Lambda1,

treatment = "X1", treat_round = "first")
Althghou family = 'gaussian', the output is based on 'binomial'!
The output without the treatment (X1) in the first round!
summary(fit1_r1)

bfi 17

Center 2:
Lambda2 <- inv.prior.cov(X2, lambda = 0.01, family = 'gaussian',

treatment = "X1", treat_round="first")
fit2_r1 <- MAP.estimation(y2, X2, family = 'gaussian', Lambda = Lambda2,

treatment = "X1", treat_round = "first")
fit2_r1

Center 3:
Lambda3 <- inv.prior.cov(X3, lambda = 0.01, family = 'gaussian',

treatment = "X1", treat_round="first")
fit3_r1 <- MAP.estimation(y3, X3, family = 'gaussian', Lambda = Lambda3,

treatment = "X1", treat_round = "first")

Centeral Server:
theta_hats_r1 <- list(fit1_r1$theta_hat, fit2_r1$theta_hat, fit3_r1$theta_hat)
A_hats_r1 <- list(fit1_r1$A_hat, fit2_r1$A_hat, fit3_r1$A_hat)
fitbfi_r1 <- bfi(theta_hats_r1, A_hats_r1, Lambda1, family = 'gaussian',

treat_round = "first") # same results with 'binomial'
The output without the treatment (X1) in the first round!
summary(fitbfi_r1, cur_mat = TRUE)

#--------------#
Second Round
#--------------#

Center 1:
Lambda11 <- inv.prior.cov(X1, lambda = 0.01, family = 'gaussian',

treatment = "X1", treat_round="second")
fit1_r2 <- MAP.estimation(y1, X1, family = 'gaussian', Lambda = Lambda11,

treatment = "X1", treat_round = "second",
gamma_bfi = fitbfi_r1$theta_hat)

The output with only the treatment (X1) in the second round!
summary(fit1_r2)

Center 2:
Lambda22 <- inv.prior.cov(X2, lambda = 0.01, family = 'gaussian', treatment = "X1",

treat_round="second")
fit2_r2 <- MAP.estimation(y2, X2, family = 'gaussian', Lambda = Lambda22,

treatment = "X1", treat_round = "second",
gamma_bfi = fitbfi_r1$theta_hat)

Center 3:
Lambda33 <- inv.prior.cov(X3, lambda = 0.01, family = 'gaussian', treatment = "X1",

treat_round="second")
fit3_r2 <- MAP.estimation(y3, X3, family = 'gaussian', Lambda = Lambda33,

treatment = "X1", treat_round = "second",
gamma_bfi = fitbfi_r1$theta_hat)

Centeral Server:
theta_hats_r2 <- list(fit1_r2$theta_hat, fit2_r2$theta_hat, fit3_r2$theta_hat)
A_hats_r2 <- list(fit1_r2$A_hat, fit2_r2$A_hat, fit3_r2$A_hat)
for_ATEs <- list(fit1_r2$for_ATE, fit2_r2$for_ATE, fit3_r2$for_ATE)

18 bfi

fitbfi_r2 <- bfi(theta_hats_r2, A_hats_r2, Lambda11, family = 'gaussian',
treat_round = "second", for_ATE = for_ATEs)

fitbfi_r2$Ave_Treat
fitbfi_r2$S_var
summary(fitbfi_r2)

##
Example 3: Survival family (L = 2 centers)
##

Setting a seed for reproducibility
set.seed(112358)

p <- 3
theta <- c(1:4, 5, 6) # regression coefficients (1:4) & omega's (5:6)

#---#
Simulating Survival data for Local Center 1
#---#
n1 <- 30
X1 <- data.frame(matrix(rnorm(n1 * p), n1, p)) # continuous (normal) variables
Simulating survival data ('time' and 'status') from 'Weibull' with
a predefined censoring rate of 0.3:
y1 <- surv.simulate(Z = list(X1), beta = theta[1:p], a = theta[5],

b = theta[6], u1 = 0.1, cen_rate = 0.3,
gen_data_from = "weibul")$D[[1]][, 1:2]

MAP Estimates at Center 1
Lambda <- inv.prior.cov(X1, lambda = c(0.1, 1), family = "survival",

basehaz = "poly")
fit1 <- MAP.estimation(y1, X1, family = 'survival', Lambda = Lambda,

basehaz = "poly")
theta_hat1 <- fit1$theta_hat # coefficient estimates
A_hat1 <- fit1$A_hat # minus the curvature matrix
summary(fit1, cur_mat=TRUE)
fit1$theta_A_poly # Only when family = "survival" and basehaz ="poly"

#---#
Simulating Survival data for Local Center 2
#---#
n2 <- 30
X2 <- data.frame(matrix(rnorm(n2 * p), n2, p)) # continuous (normal) variables
Survival simulated data from 'Weibull' with a predefined censoring rate of 0.3:
y2 <- surv.simulate(Z = list(X2), beta = theta[1:p], a = theta[5],

b = theta[6],u1 = 0.1, cen_rate = 0.3,
gen_data_from = "weibul")$D[[1]][, 1:2]

MAP Estimates at Center 2
fit2 <- MAP.estimation(y2, X2, family = 'survival', Lambda = Lambda,

basehaz = "poly")
theta_hat2 <- fit2$theta_hat
A_hat2 <- fit2$A_hat

bfi 19

summary(fit2, cur_mat=TRUE)

#-----------------------#
BFI at Central Server
#-----------------------#
When family = 'survival' and basehaz = "poly", only 'theta_A_polys'
should be defined instead of 'theta_hats' and 'A_hats':
theta_A_hats <- list(fit1$theta_A_poly, fit2$theta_A_poly)
qls <- c(fit1$q_l, fit2$q_l)
bfi <- bfi(Lambda = Lambda, family = 'survival', theta_A_polys = theta_A_hats,

basehaz = "poly", q_ls = qls)
summary(bfi, cur_mat=TRUE)

###---------------------###
Stratified Analysis
###---------------------###

Stratified analysis when first parameter ('omega_0') varies across two centers:
(newLam0 <- inv.prior.cov(X1, lambda = c(rep(1, 3), 0.3, 0.7, rep(2,2)),

family = 'survival', stratified = TRUE,
basehaz = c("poly"), strat_par = 1, L = 2))

'newLam0' is used as the prior for combined data and 'Lambda' is used as for locals:
list_newLam0 <- list(Lambda, newLam0)
bfi0 <- bfi(Lambda = list_newLam0, family = 'survival', theta_A_polys = theta_A_hats,

stratified = TRUE, basehaz = c("poly"), p = 3, q_ls = qls, strat_par = 1)
summary(bfi0, cur_mat = TRUE)

Stratified analysis when the first and second parameters ('omega_0' and 'omega_1')
vary across two centers:
newLam1 <- inv.prior.cov(X1, lambda = c(rep(1, 3), 0.3, 0.7, 0.5, 0.8, 2),

family = 'survival', stratified = TRUE, basehaz = c("poly"),
strat_par = c(1, 2), L = 2)

'newLam1' is used as the prior for combined data:
list_newLam1 <- list(Lambda, newLam1)
bfi1 <- bfi(Lambda = list_newLam1, family = 'survival', theta_A_polys = theta_A_hats,

stratified = TRUE, basehaz = c("poly"), p = 3, q_ls = qls,
strat_par = c(1, 2))

summary(bfi1, cur_mat = TRUE)

###---------------------###
Treatment Effect
###---------------------###

set.seed(112358)

#-----------------------------#
New Data for Local Center 1
#-----------------------------#
Generating new data with 'treatment' variable
We cansider the first variable (X1$X1) to be the treatment

20 bfi

X1$X1 <- sample(0:1, n1, replace=TRUE) # categorical variable
y1 <- surv.simulate(Z = list(X1), beta = theta[1:p], a = theta[5], b = theta[6],

u1 = 0.1, cen_rate = 0.3, gen_data_from = "weibul")$D[[1]][, 1:2]

#-----------------------------#
New Data for Local Center 2
#-----------------------------#
We cansider the first variable (X2$X1) to be the treatment!
X2$X1 <- sample(0:1, n2, replace=TRUE) # categorical variable
y2 <- surv.simulate(Z = list(X2), beta = theta[1:p], a = theta[5], b = theta[6],

u1 = 0.1, cen_rate = 0.3, gen_data_from = "weibul")$D[[1]][, 1:2]

#-------------#
First Round
#-------------#

Center 1:
Lambda1 <- inv.prior.cov(X1, lambda = 0.01, family = 'survival',

treatment = "X1", treat_round="first")
When treat_round = "first", the family will automatically set to 'binomial',
even if family = 'gaussian' or family = 'survival'.
fit1_r1 <- MAP.estimation(y1, X1, family = 'survival', # 'basehaz' is not needed!

Lambda = Lambda1, treatment = "X1", treat_round = "first")
While family = 'survival', the output is based on 'binomial' with no 'Intercept'!
The output without the treatment (X1) in the first round!
summary(fit1_r1)

Center 2:
Lambda2 <- inv.prior.cov(X2, lambda = 0.01, family = 'survival',

treatment = "X1", treat_round="first")
fit2_r1 <- MAP.estimation(y2, X2, family = 'survival', Lambda = Lambda2,

treatment = "X1", treat_round = "first")
fit2_r1

Centeral Server:
theta_hats_r1 <- list(fit1_r1$theta_hat, fit2_r1$theta_hat)
A_hats_r1 <- list(fit1_r1$A_hat, fit2_r1$A_hat)
fitbfi_r1 <- bfi(theta_hats_r1, A_hats_r1, Lambda1, family = 'survival',

treat_round = "first")
In the first round output is based on 'binomial', and without
the intercept and treatment (X1):
summary(fitbfi_r1, cur_mat = TRUE)

#--------------#
Second Round
#--------------#

Center 1:
Lambda11 <- inv.prior.cov(X1, lambda = 0.01, family = 'survival',

basehaz = "unspecified", treatment = "X1",
treat_round="second")

fit1_r2 <- MAP.estimation(y1, X1, family = 'survival', Lambda = Lambda11,
basehaz = "unspecified", treatment = "X1",

hazards.fun 21

treat_round = "second", gamma_bfi = fitbfi_r1$theta_hat)
The output with only the treatment (X1) in the second round!
summary(fit1_r2)

Center 2:
Lambda22 <- inv.prior.cov(X2, lambda = 0.01, family = 'survival',

basehaz = "unspecified", treatment = "X1",
treat_round="second")

fit2_r2 <- MAP.estimation(y2, X2, family = 'survival', basehaz = "unspecified",
Lambda = Lambda22, treatment = "X1",
treat_round = "second", gamma_bfi = fitbfi_r1$theta_hat)

fit2_r2

Centeral Server:
theta_hats_r2 <- list(fit1_r2$theta_hat, fit2_r2$theta_hat)
A_hats_r2 <- list(fit1_r2$A_hat, fit2_r2$A_hat)
fitbfi_r2 <- bfi(theta_hats_r2, A_hats_r2, Lambda11, family = 'survival',

basehaz = "unspecified", treat_round = "second")
When family = 'survival', 'for_ATE' is not calculated.
summary(fitbfi_r2)

hazards.fun Compute the estimated (baseline/cumulative) hazard and (baseline)
survival functions

Description

For a given vector of times, hazards.fun computes the estimated baseline hazard, cumulative
baseline hazard, hazard, baseline survival, and survival functions. It can be used for prediction on a
new sample.

Usage

hazards.fun(time,
z = NULL,
p,
theta_hat,
basehaz = c("weibul", "exp", "gomp", "poly", "pwexp"),
q_max,
timax)

Arguments

time the vector containing the time values for which the hazard rate is computed. If
the argument z is not NULL, then the length of the argument time should be the
number of columns of z, which is p.

22 hazards.fun

z a new observation vector of length p. If z = NULL (the default), then the relative
risk (z⊤β) is considered a vector of 1 with length n.

p the number of coefficients. It is taken equal to the number of elements of the
argument z, if z is not NULL.

theta_hat a vector contains the values of the estimated parameters. The first p values
represent the coefficient parameters (β), while the remaining values pertain to
the parameters of the baseline hazard function (ω).

basehaz a character string representing one of the available baseline hazard functions;
exponential ("exp"), Weibull ("weibul", the default), Gompertz ("gomp"),
exponentiated polynomial ("poly"), and piecewise exponential ("pwexp").
Can be abbreviated.

q_max a value represents the order of the exponentiated polynomial baseline hazard
function. This argument should only be used when basehaz = "poly". In
the case of multiple centers, the maximum value of the orders should be used.
ql.LRT() can be used for obtaining of the order of each center.

timax a value represents the minimum (or maximum) value of the maximum times
observed in the different centers. This argument should only be used when
basehaz = "pwexp".

Details

hazards.fun computes the estimated baseline hazard, cumulative baseline hazard, hazard, baseline
survival, and survival functions at different time points specified in the argument time.

The function hazards.fun() can be used for prediction purposes with new sample. The arguments
time and z should be provided for the new data.

Value

hazards.fun returns a list containing the following components:

bhazard the vector of estimates of the baseline hazard function at the time points given
by the argument time;

cbhazard the vector of estimates of the cumulative baseline hazard function at the time
points specified in the argument time;

bsurvival the vector of estimates of the baseline survival function at the time points given
by the argument time;

hazard the vector of estimates of the hazard function at the time points given by the
argument time;

chazard the vector of estimates of the cumulative hazard function at the time points spec-
ified in the argument time;

survival the vector of estimates of the survival function at the time points given by the
argument time.

Author(s)

Hassan Pazira
Maintainer: Hassan Pazira <hassan.pazira@radboudumc.nl>

hazards.fun 23

References

Pazira H., Massa E., Weijers J.A.M., Coolen A.C.C. and Jonker M.A. (2025b). Bayesian Federated
Inference for Survival Models, Journal of Applied Statistics (Accepted). <https://arxiv.org/abs/2404.17464>

See Also

MAP.estimation

Examples

Setting a seed for reproducibility
set.seed(1123)

##-------------------------
Simulating Survival data
##-------------------------

n <- 40
p <- 7
Original_data <- data.frame(matrix(rnorm((n+1) * p), (n+1), p))
X <- Original_data[1:n,]
X_new <- Original_data[(n+1),]
Simulating survival data from Exponential distribution
with a predefined censoring rate of 0.2:
Orig_y <- surv.simulate(Z = Original_data, beta = rep(1,p), a = exp(1),

cen_rate = 0.2, gen_data_from = "exp")$D[[1]][,1:2]
y <- Orig_y[1:n,]
y_new <- Orig_y[(n+1),]
time_points <- seq(0, max(y$time), length.out=20)

#------------------------
Weibull baseline hazard
#------------------------

Lambda <- inv.prior.cov(X, lambda = c(0.5, 1), family = 'survival', basehaz = 'weibul')
fit_weib <- MAP.estimation(y, X, family = 'survival', Lambda = Lambda,

basehaz = "weibul")
reltive risk is 1:
hazards.fun(time = time_points, p = p, theta_hat = fit_weib$theta_hat,

basehaz = "weibul")

#-------------------------
Gompertz baseline hazard
#-------------------------
fit_gomp <- MAP.estimation(y, X, family = 'survival', Lambda = Lambda,

basehaz = "gomp")
different time points
hazards.fun(time=1:max(y*2), p = p, theta_hat = fit_gomp$theta_hat,

basehaz = "gomp")

##----------------------------

24 inv.prior.cov

Prediction for a new sample
##----------------------------

Exponentiated polynomial (poly) baseline hazard:
Lambda <- inv.prior.cov(X, lambda = c(0.5, 1), family = 'survival', basehaz = "poly")
fit_poly <- MAP.estimation(y, X, family = 'survival', Lambda = Lambda,

basehaz = "poly")
hazards.fun(time = y_new$time, z = X_new, theta_hat = fit_poly$theta_hat,

basehaz = "poly", q_max = fit_poly$q_l)

Piecewise Exponential (pwexp) baseline hazard:
Lambda <- inv.prior.cov(X, lambda = c(0.5, 1), family = 'survival', basehaz = "pwexp")
fit_pw <- MAP.estimation(y, X, family='survival', Lambda=Lambda, basehaz="pwexp",

min_max_times = max(y))
hazards.fun(time = y_new$time, z = X_new, theta_hat = fit_pw$theta_hat,

basehaz = "pwexp", timax = max(y))

inv.prior.cov Creates an inverse covariance matrix for a Gaussian prior

Description

inv.prior.cov constructs a diagonal inverse covariance matrix for the Gaussian prior distribution
based on the design matrix of covariates. This construction accounts for the number of regression
parameters, especially when dealing with categorical covariates. For a linear model, it also includes
an additional row and column to represent the variance of the measurement error. In the case of a
survival model, it considers the parameters of the baseline hazard function as well.

Usage

inv.prior.cov(X,
lambda = 1,
L = 2,
family = c("gaussian", "binomial", "survival"),
treatment = NULL,
treat_round = NULL,
intercept = TRUE,
stratified = FALSE,
strat_par = NULL,
center_spec = NULL,

basehaz = c("weibul", "exp", "gomp", "poly", "pwexp", "unspecified"),
max_order = 2,
n_intervals = 4)

Arguments

X design matrix of dimension n× p, where n is the number of samples observed,
and p is the number of predictors/variables so excluding the intercept.

inv.prior.cov 25

lambda the vector used as the diagonal of the (inverse covariance) matrix that will be
created by inv.prior.cov(). The length of the vector depends on the num-
ber of columns of X, type of the covariates (continuous/dichotomous or cate-
gorical), family, whether an intercept is included in the model, and whether
stratified analysis is desired. When stratified = FALSE, lambda could be
a single positive number (if all values in the vector are equal), a vector of two el-
ements (the first is used for regression parameters including “intercept” and the
second for the “sigma2” in the gaussian family or for the baseline hazard param-
eters in the survival case), or a vector of length equal to the number of model
parameters. However, the length of lambda is different when stratified =
TRUE, see ‘Details’ for more information. Default is lambda = 1, which means
all model parameters are set to one.

L the number of centers. This argument is used only when stratified = TRUE.
Default is L = 2. See ‘Details’ and ‘Examples’.

family a description of the error distribution. This is a character string naming a family
of the model. In the current version of the package, the family of model can
be "gaussian" (with identity link function), "binomial" (with logit link
function), or "survival". Can be abbreviated. By default the gaussian family
is used. In case of a linear regression model, family = "gaussian", there is
an extra model parameter for the variance of measurement error. While in the
case of survival model, family = "survival", the number of the model param-
eters depend on the choice of baseline hazard functions, see ‘Details’ for more
information.

treatment a character string representing the name or place of the binary covariate, re-
spectively. This covariate indicates whether the patient got the new treatment
(zℓi = 1) or the placebo/standard treatment (zℓi = 0). For both the first and
second rounds, it should not be ’NULL’. See ‘Details’.

treat_round a character string representing the 'first' or 'second' round of estimating
treatment effects. In the first round, treat_round = 'first', the local esti-
mates of the coefficients (γℓ) is estimated. In the second round, treat_round =
'second', the propensity scores and the statistical summaries (for_ATE) are
calculated.

intercept logical flag for having an intercept. It is not used when family = "survival".
By changing the intercept the dimension of the inverse covariance matrix
changes. If intercept = TRUE (the default), the output matrix created by inv.prior.cov()
has one row and one column related to intercept, while if intercept = FALSE,
the resulting matrix does not have the row and column called intercept.

stratified logical flag for performing the stratified analysis. If stratified = TRUE, the pa-
rameter(s) selected in the strat_par argument are allowed to be different across
centers to deal with heterogeneity across centers. This argument should only
be used when designing the inverse covariance matrix for the (fictive) combined
data, i.e., the last matrix for the Lambda argument in bfi(). If inv.prior.cov()
is used for the analysis in the local centers (to build the L first matrices for the
Lambda argument in bfi()), this argument should be FALSE, even if the BFI
analysis is stratified. Default is stratified = FALSE. See ‘Details’ and ‘Exam-
ples’.

26 inv.prior.cov

strat_par a integer vector for indicating the stratification parameter(s). It can be used to
deal with heterogeneity due to center-specific parameters. For the "binomial"
and "gaussian" families it is a one- or two-element integer vector so that the
values 1 and/or 2 are/is used to indicate that the “intercept” and/or “sigma2” are
allowed to vary, respectively. For the "binomial" family the length of the vector
should be one which refers to “intercept”, and the value of this element should be
1 (to handel heterogeneity across outcome means). For "gaussian" this vector
can be 1 for indicating the “intercept” only (handeling heterogeneity across out-
come means), 2 for indicating the “sigma2” only (handeling heterogeneity due
to nuisance parameter), and c(1, 2) for both “intercept” and “sigma2”. When
family = "survival", this vector can contain any combination from 1 to the
maximum number of parameters of the baseline function, i.e., 1 for "exp", 2
for "weibul" and "gomp", max_order + 1 for "poly", and n_intervals for
"pwexp". This argument is only used when stratified = TRUE. Default is
strat_par = NULL. If stratified = TRUE, strat_par can not be NULL except
when center_spec is not NULL for handeling heterogeneity due to clustering
and missing covariates. See ‘Details’ and ‘Examples’.

center_spec a vector of L elements for representing the center specific variable. This ar-
gument is used only when stratified = TRUE and strat_par = NULL. Each
element represents a specific feature of the corresponding center. There must
be only one specific value or attribute for each center. This vector could be a
numeric, characteristic or factor vector. Note that, the order of the centers in the
vector center_spec must be the same as in the list of the argument theta_hats
in the function bfi(). The used data type in the argument center_spec must be
categorical. Default is center_spec = NULL. See also ‘Details’ and ‘Examples’.

basehaz a character string representing one of the available baseline hazard functions;
exponential ("exp"), Weibull ("weibul", the default), Gompertz ("gomp"),
exponentiated polynomial ("poly"), piecewise constant exponential ("pwexp"),
and unspecified baseline hazard ("unspecified"). Can be abbreviated. It
is only used when family = "survival".

max_order an integer representing the maximum value of q_l, which is the order/degree
minus 1 of the exponentiated polynomial baseline hazard function. This argu-
ment is only used when family = "survival" and basehaz = "poly". Default
is 2.

n_intervals an integer representing the number of intervals in the piecewise exponential
baseline hazard function. This argument is only used when family = "survival"
and basehaz = "pwexp". Default is 4.

Details

inv.prior.cov creates a diagonal matrix with the vector lambda as its diagonal. The argument
stratified = TRUE should only be used to construct a matrix for the prior density in case of strat-
ification in the fictive combined data. Never be used for the construction of the matrix for analysis
in the centers.

When stratified = FALSE, the length of the vector lambda depends on the covariate matrix X,
family, basehaz, and whether an “intercept” is included in the model. For example, if the de-
sign matrix X has p columns with continuous or dichotomous covariates, family = gaussian, and

inv.prior.cov 27

intercept = TRUE, then lambda should have p+2 elements. In this case, if in X there is a categorical
covariate with q > 2 categories, then the length of lambda increases with q − 2.

All values of lambda should be non-negative as they represent the inverse of the variance of the
Gaussian prior. This argument is considered as the inverse of the variance of the prior distribution
for: (β0,β) if family = "binomial" and intercept = TRUE; (β0,β, σ

2) if family = "gaussian"
and intercept = TRUE; and (β,ω) if family = "survival".

If all values in the vector lambda equal, one value is enough to be given as entry. If lambda
is a scalar, the function inv.prior.cov sets each value at the diagonal equal to lambda. When
lambda is two dimensional: if family = "binomial", the first and second values are used for the
inverse of the variance of the prior distribution for the intercept (β0) and regression parameters (β),
respectively; If family = "gaussian", the first and second values are used for the inverse of the
variance of the prior distribution for the regression parameters including the intercept (β0,β) and
variance of the measurement error (σ2), respectively; If family = "survival", the first and second
values are used for the inverse of the variance of the prior distribution for the regression parameters
(β) and baseline hazard parameters (ω), respectively. But if stratified = TRUE the length of the
vector lambda must be equal to the number of parameters in the combined model.

If intercept = FALSE, for the binomial family the stratified analysis is not possible therefore
stratified can not be TRUE.

If stratified = FALSE, both strat_par and center_spec must be NULL (the defaults), while if
stratified = TRUE only one of the two must be NULL.

If stratified = TRUE and family = "survival", strat_par = 1 refers to ω0 when basehaz =
"poly", and to ω1 for other baseline hazards.

The output of inv.prior.cov() can be used in the main functions MAP.estimation() and bfi().

Value

inv.prior.cov returns a diagonal matrix. The dimension of the matrix depends on the number of
columns of X, type of the covariates (continuous/dichotomous or categorical), intercept, family,
and basehaz.

Author(s)

Hassan Pazira and Marianne Jonker
Maintainer: Hassan Pazira <hassan.pazira@radboudumc.nl>

References

Jonker M.A., Pazira H. and Coolen A.C.C. (2024). Bayesian federated inference for estimating
statistical models based on non-shared multicenter data sets, Statistics in Medicine, 43(12): 2421-
2438. <https://doi.org/10.1002/sim.10072>

Pazira H., Massa E., Weijers J.A.M., Coolen A.C.C. and Jonker M.A. (2025b). Bayesian Federated
Inference for Survival Models, Journal of Applied Statistics (Accepted). <https://arxiv.org/abs/2404.17464>

Jonker M.A., Pazira H. and Coolen A.C.C. (2025a). Bayesian Federated Inference for regression
models based on non-shared medical center data, Research Synthesis Methods, 1-41. <https://doi.org/10.1017/rsm.2025.6>

28 inv.prior.cov

See Also

MAP.estimation

Examples

#----------------
Data Simulation
#----------------
X <- data.frame(x1=rnorm(50), # standard normal variable

x2=sample(0:2, 50, replace=TRUE), # categorical variable
x3=sample(0:1, 50, replace=TRUE)) # dichotomous variable

X$x2 <- as.factor(X$x2)
X$x3 <- as.factor(X$x3)

The (inverse) variance value (lambda=0.05) is assumed to be
the same for Gaussian prior of all parameters (for non-stratified)

#---
Inverse Covariance Matrix for the Gaussian prior
#---
y ~ Binomial with 'intercept'
inv.prior.cov(X, lambda = 0.05, family = 'binomial')
returns a 5-by-5 matrix

y ~ Binomial without 'intercept'
inv.prior.cov(X, lambda = 0.05, family = "binomial", intercept = FALSE)
a 4-by-4 matrix

y ~ Gaussian with 'intercept'
inv.prior.cov(X, lambda = 0.05, family = 'gaussian')
returns a 6-by-6 matrix

Survival family with 'weibul' baseline hazard
inv.prior.cov(X, lambda = c(0.05, 0.1), family = 'survival')
returns a 6-by-6 matrix

Survival family with 'pwexp' baseline hazard (4 intervals)
inv.prior.cov(X, lambda = 0.05, family = 'survival', basehaz = "pwexp")
returns a 8-by-8 matrix

Survival family with 'poly' baseline hazard
inv.prior.cov(X, lambda = c(0.05, 0.1), family = 'survival', basehaz = "poly")
returns a 7-by-7 matrix

#--------------------
Stratified analysis
#--------------------
y ~ Binomial when 'intercept' varies across 3 centers:
inv.prior.cov(X, lambda = c(.2, 1), family = 'binomial', stratified = TRUE,

strat_par = 1, L = 3)

y ~ Gaussian when 'intercept' and 'sigma2' vary across 2 centers; y ~ Gaussian

MAP.estimation 29

inv.prior.cov(X, lambda = c(1, 2, 3), family = "gaussian", stratified = TRUE,
strat_par = c(1, 2))

y ~ Gaussian when 'sigma2' varies across 2 centers (with 'intercept')
inv.prior.cov(X, lambda = c(1, 2, 3), family='gaussian', stratified = TRUE,

strat_par = 2)

y ~ Gaussian when 'sigma2' varies across 2 centers (without 'intercept')
inv.prior.cov(X, lambda = c(2, 3), family = "gaussian", intercept = FALSE,

stratified=TRUE, strat_par = 2)

#--------------------------
Center specific covariate
#--------------------------
center specific covariate has K = 2 categories across 4 centers; y ~ Binomial
inv.prior.cov(X, lambda = c(0.1:2), family = 'binomial', stratified = TRUE,

center_spec = c("Iran","Netherlands","Netherlands","Iran"), L=4)

center specific covariate has K = 3 categories across 5 centers; y ~ Gaussian
inv.prior.cov(X, lambda = c(0.5:3), family = 'gaussian', stratified = TRUE,

center_spec = c("Medium","Big","Small","Big","Small"), L = 5)

center specific covariate has K = 4 categories across 5 centers; y ~ Gaussian
inv.prior.cov(X, lambda = 1, family = 'gaussian', stratified = TRUE,

center_spec = c(3,1:4), L=5)

MAP.estimation Maximum A Posteriori estimation

Description

MAP.estimation function is used (in local centers) to compute Maximum A Posterior (MAP) esti-
mators of the parameters for Generalized Linear Models (GLM) and Survival models.

Usage

MAP.estimation(y,
X,
family = c("gaussian", "binomial", "survival"),
Lambda,
intercept = TRUE,

basehaz = c("weibul", "exp", "gomp", "poly", "pwexp", "unspecified"),
treatment = NULL,
treat_round = NULL,
refer_treat,
gamma_bfi = NULL,
RCT_propens = NULL,
initial = NULL,

30 MAP.estimation

alpha = 0.1,
max_order = 2,
n_intervals = 4,
min_max_times,
center_zero_sample = FALSE,
zero_sample_cov,
refer_cat,
zero_cat,
control = list())

Arguments

y response vector. If the “binomial” family is used, this argument is a vector with
entries 0 (failure) or 1 (success). Alternatively, for this family, the response can
be a matrix where the first column is the number of “successes” and the second
column is the number of “failures”. For the “survival” family, the response is a
matrix where the first column is the survival time, named “time”, and the second
column is the censoring indicator, named “status”, with 0 indicating censoring
time and 1 indicating event time.

X design matrix of dimension nℓ × p, where p is the number of covariates or
predictors and nℓ is the number of indeviduals in the local center. If there is
a categorical covariate, then the function factor() should be used to encode
the covariate as a factor. Note that the order of the covariates must be the same
across the centers; otherwise, the output estimates of bfi() will be incorrect.

family a description of the error distribution. This is a character string naming a family
of the model. In the current version of the package, the family of model can be
“gaussian” (with identity link function), “binomial” (with logit link func-
tion), or “survival”. Can be abbreviated. By default the “gaussian” family
is used. In case of a linear regression model, family = "gaussian", there is
an extra model parameter for the variance of measurement error. While in the
case of survival model, family = "survival", the number of the model param-
eters depend on the choice of baseline hazard functions, see ‘Details’ for more
information.

Lambda the inverse variance-covariance matrix of the Gaussian distribution that is used
as prior distribution for the model parameters. The dimension of the matrix
depends on the number of columns of X, type of the covariates (continuous /
dichotomous or categorical), family, and whether an intercept is included (if
applicable). However, Lambda can be easily created by inv.prior.cov(). See
inv.prior.cov for more information.

intercept logical flag for fitting an intercept. If intercept=TRUE (the default), the inter-
cept is fitted, i.e., it is included in the model, and if intercept = FALSE it is
set to zero, i.e., it’s not in the model. This argument is not used if family =
"survival".

basehaz a character string representing one of the available baseline hazard functions;
exponential (“exp”), Weibull (“weibul”, the default), Gompertz (“gomp”),
exponentiated polynomial (“poly”), piecewise constant exponential (“pwexp”),
and unspecified baseline hazard (“unspecified”). Can be abbreviated. It

MAP.estimation 31

is used only when family = "survival". If local sample size is large and the
shape of the baseline hazard function is completely unknown, the “exponenti-
ated polynomial” and “piecewise exponential” hazard functions would be pre-
ferred above the lower dimensional alternatives. However, if the local sam-
ples size is low, one should be careful using the “piecewise exponential” hazard
function with many intervals. If basehaz = "unspecified", it means that a
(semi-parametric) Cox model is considered, and the parameters (regression co-
efficients) are estimated using the partial log-likelihood. If treatment is not
NULL, then basehaz must be set to "unspecified", as the regression coeffi-
cients are estimated using the weighted partial log-likelihood.

treatment a character string representing the name or place of the binary covariate, re-
spectively. This covariate indicates whether the patient got the new treatment
(zℓi = 1) or the placebo/standard treatment (zℓi = 0). The treatment effect is
estimated when this argument is NOT ’NULL’. If it is set to ’NULL’ (the default),
the treatment effect will not be estimated. For both the first and second rounds,
it should not be ’NULL’. See ‘Details’.

treat_round a character string representing the 'first' or 'second' round of estimating
treatment effects. In the first round, treat_round = 'first', the local esti-
mates of the coefficients (γℓ) is estimated. In the second round, treat_round
= 'second', the treatment effect, propensity scores and the statistical sum-
maries (for_ATE, only for ’binomial’ and ’gaussian’ families) are calculated to
be sent to the central server for estimating the BFI treatment effect (ζ̂BFI) and
average treatment effects (ATEs).

refer_treat a character string representing the reference category of the treatment variable.
The reference category is considered as zℓi = 0. This argument is used when
treatment is not ’NULL’. Default is refer_treat = levels(X$treatment)[1].

gamma_bfi a vector specifying the BFI estimates of the coefficients received from the central
server in the first round. It can be defined by the output of MAP.estimation()$theta_hat
obtained from the first round. The length of gamma_bfi equals the number of
regression coefficients, including the intercept if intercept=TRUE, but exclud-
ing ζ, which represents the treatment effect, as well as the nuisance parameter
σ in the gaussian family and any parameters of the baseline hazard (ω) for
survival. This argument is used only when the argument treatment is not
’NULL’. If treatment is not ’NULL’ but gamma_bfi = NULL, then the argument
RCT_propens must not be ’NULL’, indicating an RCT study. See ‘Details’.

RCT_propens a vector specifying the propensity scores, which represent the probability of
receiving the treatment given the covariates, which are known in the randomized
studies (RCTs). For example, in a 1:1 randomized trial, the propensity scores
are, by definition, equal to 1/2 (or 0.5), whereas in an unbalanced randomized
trial, e.g., a 2:1 trial, the propensity scores are now 2/3 and 1/3 for the two arms,
respectively. The length of RCT_propens equals to the number of individuals
in the local center denoted as nℓ. This argument is used only when the study
is a randomized control trial, i.e., the propensity scores are known for this local
center. In this case, there is only ‘one’ round, and the argument treatment
must not be ’NULL’, whereas gamma_bfi = NULL. Indeed, when ’treatment’ is not
’NULL’, one of the arguments ’RCT_propens’ or ’gamma_bfi’ could be ’NULL’.
See ‘Details’.

32 MAP.estimation

initial a vector specifying initial values for the parameters to be optimized over. The
length of initial is equal to the number of model parameters and thus, is equal
to the number of rows or columns of Lambda. Since the 'L-BFGS-B' method is
used in the algorithm, these values should always be finite. Default is a vector
of zeros, except for the survival family with the poly function, where it is
a vector with the first p elements as zeros for coefficients (β) and -0.5 for the
remaining parameters (ω). For the gaussian family, the last element of the
initial vector could also be considered negative, because the Gaussian prior
was applied to log(σ2).

alpha a significance level used in the chi-squared distribution (with one degree of free-
dom and 1-α representing the upper quantile) to conduct a likelihood ratio test
for obtaining the order of the exponentiated polynomial baseline hazard func-
tion. It is only used when family = "survival" and basehaz = "poly". De-
fault is 0.1. See ‘Details’.

max_order an integer representing the maximum value of q_l, which is the order/degree
minus 1 of the exponentiated polynomial baseline hazard function. This argu-
ment is only used when family = "survival" and basehaz = "poly". Default
is 2.

n_intervals an integer representing the number of intervals in the piecewise exponential
baseline hazard function. This argument is only used when family = "survival"
and basehaz = "pwexp". Default is 4.

min_max_times a scalar representing the minimum of the maximum event times observed in
the centers. The value of this argument should be defined by the central server
(which has access to the maximum event times of all the centers) and is only
used when family = "survival" and basehaz = "pwexp".

center_zero_sample

logical flag indicating whether the center has a categorical covariate with no ob-
servations/individuals in one of the categories. Default is center_zero_sample
= FALSE.

zero_sample_cov

either a character string or an integer representing the categorical covariate that
has no samples/observations in one of its categories. This covariate should
have at least two categories, one of which is the reference. It is used when
center_zero_sample = TRUE.

refer_cat a character string representing the reference category. The category with no
observations (the argument zero_cat) cannot be used as the reference in the
argument refer_cat. It is used when center_zero_sample = TRUE.

zero_cat a character string representing the category with no samples/observations. It is
used when center_zero_sample = TRUE.

control a list of control parameters. See ‘Details’.

Details

MAP.estimation function finds the Maximum A Posteriori (MAP) estimates of the model parame-
ters by maximizing the log-posterior density with respect to the parameters, i.e., the estimates equal
the values for which the log-posterior density is maximal (the posterior mode). In other words,

MAP.estimation 33

MAP.estimation() optimizes the log-posterior density with respect to the parameter vector to ob-
tain its MAP estimates. In addition to the model parameters (i.e., coefficients (β) and variance error
(σ2

e) for gaussian or the parameters of the baseline hazard (ω) for survival), the curvature matrix
(Hessian of the log-posterior) is estimated around the mode.

The MAP.estimation function returns an object of class ‘bfi‘. Therefore, summary() can be used
for the object returned by MAP.estimation().

For the case where family = "survival" and basehaz = "poly", we assume that in all centers the
qℓ’s are equal. However, the order of the estimated polynomials may vary across the centers so
that each center can have different number of parameters, say qℓ+1. After obtaining the estimates
within the local centers (by using MAP.estimation()) and having all estimates in the central server,
we choose the order of the polynomial approximation for the combined data to be the maximum
of the orders of the local polynomial functions, i.e., max{q1, . . . , qL}, to approximate the global
baseline hazard (exponentiated polynomial) function more accurately. This is because the higher-
order polynomial approximation can capture more complex features and details in the combined
data. Using the higher-order approximation ensures that we account for the higher-order moments
and features present in the data while maintaining accuracy. As a result, all potential cases are stored
in the theta_A_poly argument to be used in bfi() by the central server. For further information
on the survival family, refer to the ’References’ section.

The three arguments 'treatment', 'treat_round', 'refer_treat', 'gamma_bfi', and 'RCT_propens'
are related to the estimation of the treatment effect. For observational and non-randomized studies,
the treatment effect is estimated in two rounds; In the first round, β̂ℓ (or γ̂ℓ) are estimated locally
and in the central server β̂BFI (or γ̂BFI) is estimated and then is sent to all local centers for the
second round to estimate propensity scores, weights, treatment effect and ATEs. In the first round,
the argument treatment should not be ’NULL’ and treat_round = "first", while gamma_bfi =
NULL and RCT_propens = NULL. Moreover, in the first round, the family must be set to binomial,
however this is handled automatically. In the second round, local weighted MAP estimate of the
treatment effects and propensity scores are estimated, and along with some summary statistics are
sent to the central server to estimate the average treatment effects ATEs (in this case treatment
and gamma_bfi should not be ’NULL’ and treat_round = "second", but RCT_propens = NULL). In
contrast, for the randomized control trial (RCT), the treatment effect can be estimated by only one
round as the propensity scores are known (in this case treatment and RCT_propens should not be
’NULL’, but gamma_bfi = NULL). NOTE: the argument gamma_bfi should not include estimates of
the nuisance parameter σ in the gaussian family or any parameters of the baseline hazard (ω) and
the intercept for survival. For more examples on treatment effect estimation, see the ‘Examples’
section of bfi.

To solve unconstrained and bound-constrained optimization problems, the MAP.estimation func-
tion utilizes an optimization algorithm called Limited-memory Broyden-Fletcher-Goldfarb-Shanno
with Bound Constraints (L-BFGS-B), Byrd et. al. (1995). The L-BFGS-B algorithm is a limited-
memory “quasi-Newton” method that iteratively updates the parameter estimates by approximating
the inverse Hessian matrix using gradient information from the history of previous iterations. This
approach allows the algorithm to approximate the curvature of the posterior distribution and effi-
ciently search for the optimal solution, which makes it computationally efficient for problems with
a large number of variables.

By default, the algorithm uses a relative change in the objective function as the convergence crite-
rion. When the change in the objective function between iterations falls below a certain threshold
(‘factr‘) the algorithm is considered to have converged. The convergence can be checked with the
argument convergence in the output. See ‘Value’.

34 MAP.estimation

In case of convergence issue, it may be necessary to investigate and adjust optimization parameters
to facilitate convergence. It can be done using the initial and control arguments. By the ar-
gument initial the initial points of the interative optimization algorithm can be changed, and the
argument control is a list that can supply any of the following components:

maxit: is the maximum number of iterations. Default is 150;

factr: controls the convergence of the 'L-BFGS-B' method. Convergence occurs when the reduc-
tion in the objective is within this factor of the machine tolerance. Default for factr is 1e7,
which gives a tolerance of about 1e-9. The exact tolerance can be checked by multiplying this
value by .Machine$double.eps;

pgtol: helps to control the convergence of the 'L-BFGS-B' method. It is a tolerance on the pro-
jected gradient in the current search direction, i.e., the iteration will stop when the maximum
component of the projected gradient is less than or equal to pgtol, where pgtol≥ 0. Default
is zero, when the check is suppressed;

trace: is a non-negative integer. If positive, tracing information on the progress of the opti-
mization is produced. Higher values may produce more tracing information: for the method
'L-BFGS-B' there are six levels of tracing. To understand exactly what these do see the source
code of optim function in the stats package;

REPORT: is the frequency of reports for the 'L-BFGS-B' method if 'control$trace' is positive.
Default is every 10 iterations;

lmm: is an integer giving the number of BFGS updates retained in the 'L-BFGS-B' method. Default
is 5.

Value

MAP.estimation returns a list containing the following components:

theta_hat the vector corresponding to the maximum a posteriori (MAP) estimates of the
parameters. For the gaussian family, although a Gaussian prior was applied
to log(σ2), the last element of this vector was back-transformed to σ2. When
treatment is not NULL and treat_round = 'first', this is the MAP esti-
mates of only regression coefficients (γℓ) except the treatment effect ζℓ. While
treatment is not NULL and treat_round = 'second', this is ζ̂ℓ, the weighted
MAP estimate of the treatment effect ζℓ in center ℓ;

A_hat minus the curvature (or Hessian) matrix around the point theta_hat. The di-
mension of the matrix is the same as the argument Lambda;

sd the vector of (posterior) standard deviation of the MAP estimates in theta_hat,
that is sqrt(diag(solve(A_hat)));

Lambda the inverse variance-covariance matrix of the Gaussian distribution that is used
as prior distribution for the parameters. It’s exactly the same as the argument
Lambda;

formula the formula applied;

names the names of the model parameters;

n sample size, nℓ;

np the number of coefficients;

MAP.estimation 35

q_l the order/degree minus 1 of the exponentiated polynomial baseline hazard func-
tion determined for the current center by the likelihood ratio test. This out-
put argument, q_l, is only shown when family = "survival" and basehaz =
"poly", and will be used in the function bfi();

theta_A_poly an array where the first component is a matrix with columns representing the
MAP estimates of the parameters for different q_l’s, i.e., q_l, q_l+1, ..., max_order.
The other components are minus the curvature matrices for different q_l’s, i.e.,
q_l, q_l+1, ..., max_order. Therefore, the first non-NA curvature matrix is
equal to the output argument A_hat. This output argument, theta_A_poly, is
only shown if family = "survival" and basehaz = "poly", and will be used
in the function bfi();

lev_no_ref_zer a vector containing the names of the levels of the categorical covariate that has
no samples/observations in one of its categories. The name of the category with
no samples and the name of the reference category are excluded from this vector.
This argument is shown when family = "survival" and basehaz = "poly",
and will be used in the function bfi();

treatment a character string representing the name or place of the binary covariate, respec-
tively. If it is set to ’NULL’, the treatment effect will not be estimated;

refer_treat the reference category of the treatment. It is shown when treatment is not
’NULL’, and can be used in the function bfi();

gamma_bfi a vector specifying the BFI estimates of the coefficients received from the central
server in the first round. If treatment = NULL, then gamma_bfi must also be
’NULL’;

RCT_propens a vector specifying the propensity scores, which represent the probability of
receiving the treatment given the covariates, which are known in the randomized
studies (RCTs). If treatment = NULL, then RCT_propens must also be ’NULL’;

propensity a vector specifying the propensity scores (the probability a patient gets the treat-
ment given the characteristics measured at baseline) calculated by Pr(Zℓ =
1|Xℓ);

for_ATE a vector used in the central server to calculate the average treatment effect (ATE).
For family of binomial and gaussian, its elements are:
first mℓ1, the number of patients in the treatment group, where nℓ = mℓ1+mℓ2,
second mℓ2, the number of patients in the reference group, where mℓ2 = nℓ −

mℓ1,
third

∑nℓ

i=1 zℓiyℓi,
fourth

∑nℓ

i=1(zℓiyℓi)
2,

fifth
∑nℓ

i=1 zℓi/eℓi,
sixth

∑nℓ

i=1 zℓiyℓi/eℓi,
seventh

∑nℓ

i=1(1− zℓi)/(1− eℓi),
eighth

∑nℓ

i=1(1− zℓi)yℓi/(1− eℓi),
ninth

∑nℓ

i=1(1− zℓi)yℓi,
but for survival, it’s ’NULL’;

zero_sample_cov

the categorical covariate that has no samples/observations in one of its cate-
gories. It is shown when center_zero_sample = TRUE, and can be used in the
function bfi();

36 MAP.estimation

refer_cat the reference category. It is shown when center_zero_sample = TRUE, and can
be used in the function bfi();

zero_cat the category with no samples/observations. It is shown when center_zero_sample
= TRUE, and can be used in the function bfi();

value the value of minus the log-likelihood posterior density evaluated at theta_hat;

family the family used;

basehaz the baseline hazard function used;

intercept logical flag used to fit an intercept if TRUE, or set to zero if FALSE;

convergence an integer value used to encode the warnings and the errors related to the algo-
rithm used to fit the model. The values returned are:

0 algorithm has converged,
1 maximum number of iterations (’maxit’) has been reached,
2 Warning from the ’L-BFGS-B’ method. See the message after this value;

control the list of control parameters used to compute the MAP estimates.

Author(s)

Hassan Pazira and Marianne Jonker
Maintainer: Hassan Pazira <hassan.pazira@radboudumc.nl>

References

Jonker M.A., Pazira H. and Coolen A.C.C. (2024). Bayesian federated inference for estimating
statistical models based on non-shared multicenter data sets, Statistics in Medicine, 43(12): 2421-
2438. <https://doi.org/10.1002/sim.10072>

Pazira H., Massa E., Weijers J.A.M., Coolen A.C.C. and Jonker M.A. (2025b). Bayesian Federated
Inference for Survival Models, Journal of Applied Statistics (Accepted). <https://arxiv.org/abs/2404.17464>

Jonker M.A., Pazira H. and Coolen A.C.C. (2025a). Bayesian Federated Inference for regression
models based on non-shared medical center data, Research Synthesis Methods, 1-41. <https://doi.org/10.1017/rsm.2025.6>

Byrd R.H., Lu P., Nocedal J. and Zhu C. (1995). A limited memory algorithm for bound constrained
optimization. SIAM Journal on Scientific Computing, 16, 1190-1208. <https://doi.org/10.1137/0916069>

See Also

bfi, inv.prior.cov and summary.bfi

Examples

###--------------###
y ~ Gaussian
###--------------###

Setting a seed for reproducibility
set.seed(11235)

model parameters: coefficients and sigma2 = 1.5

MAP.estimation 37

theta <- c(1, 2, 2, 2, 1.5)

#----------------
Data Simulation
#----------------
n <- 30 # sample size
p <- 3 # number of coefficients without intercept
X <- data.frame(matrix(rnorm(n * p), n, p)) # continuous variables
linear predictor:
eta <- theta[1] + theta[2] * X$X1 + theta[3] * X$X2 + theta[4] * X$X3
inverse of the link function (g^{-1}(\eta) = \mu):
mu <- gaussian()$linkinv(eta)
y <- rnorm(n, mu, sd = sqrt(theta[5]))

Load the BFI package
library(BFI)

#---
MAP estimations for theta and curvature matrix
#---
MAP estimates with 'intercept'
Lambda <- inv.prior.cov(X, lambda = c(0.1, 1), family = "gaussian")
(fit <- MAP.estimation(y, X, family = "gaussian", Lambda))
class(fit)
summary(fit, cur_mat = TRUE)

MAP estimates without 'intercept'
Lambda <- inv.prior.cov(X, lambda = c(0.1, 1), family = 'gaussian',

intercept = FALSE)
(fit1 <- MAP.estimation(y, X, family = 'gaussian', Lambda, intercept = FALSE))
summary(fit1, cur_mat = TRUE)

###-----------------###
Survival family
###-----------------###

Setting a seed for reproducibility
set.seed(112358)

#-------------------------
Simulating Survival data
#-------------------------
n <- 50
beta <- 1:4
p <- length(beta)
X <- data.frame(matrix(rnorm(n * p), n, p)) # continuous (normal) variables

Simulating survival data from Weibull with a predefined censoring rate of 0.3
y <- surv.simulate(Z = list(X), beta = beta, a = 5, b = exp(1.8), u1 = 0.1,

cen_rate = 0.3, gen_data_from = "weibul")$D[[1]][, 1:2]

38 MAP.estimation

#---------------------------------------
MAP estimations with "weibul" function
#---------------------------------------
Lambda <- inv.prior.cov(X, lambda = c(0.1, 1), family = 'survival',

basehaz = "weibul")
fit2 <- MAP.estimation(y, X, family = 'survival', Lambda = Lambda,

basehaz = "weibul")
fit2
summary(fit2, cur_mat = TRUE)

#-------------------------------------
MAP estimations with "poly" function
#-------------------------------------
Lambda <- inv.prior.cov(X, lambda = c(0.1, 1), family = 'survival',

basehaz = 'poly')
fit3 <- MAP.estimation(y, X, family = "survival", Lambda = Lambda,

basehaz = "poly")
Degree of the exponentiated polynomial baseline hazard
fit3$q_l + 1
theta_hat for (beta_1, ..., beta_p, omega_0, ..., omega_{q_l})
fit3$theta_A_poly[,,1][,fit3$q_l+1] # equal to fit3$theta_hat
A_hat
fit3$theta_A_poly[,,fit3$q_l+2] # equal to fit3$A_hat
summary(fit3, cur_mat = TRUE)

#--
MAP estimations with "pwexp" function with 3 intervals
#---
Assume we have 4 centers
Lambda <- inv.prior.cov(X, lambda = c(0.1, 1), family = 'survival',

basehaz = 'pwexp', n_intervals = 3)
For this baseline hazard ("pwexp"), we need to know
maximum survival times of the 3 other centers:
max_times <- c(max(rexp(30)), max(rexp(50)), max(rexp(70)))
Minimum of the maximum values of the survival times of all 4 centers is:
min_max_times <- min(max(y$time), max_times)
fit4 <- MAP.estimation(y, X, family = "survival", Lambda = Lambda,

basehaz = "pwexp", n_intervals = 3,
min_max_times=max(y$time))

summary(fit4, cur_mat = TRUE)

#--------------------------
Semi-parametric Cox model
#--------------------------
Lambda <- inv.prior.cov(X, lambda = c(0.1), family = 'survival',

basehaz = "unspecified")
fit5 <- MAP.estimation(y, X, family = 'survival', Lambda = Lambda,

basehaz = "unspecified")
summary(fit5, cur_mat = TRUE)

n.par 39

n.par The Number of Predictors, Coefficients, and Observations

Description

n.par returns the number of regression parameters, covariates and observations present in X based
on the selected family.

Usage

n.par(X, family = c("gaussian", "binomial", "survival"))

Arguments

X design matrix of dimension n× p, where n is the number of samples observed,
and p is the number of predictors/covariables. It could be a matrix or a list of
matrices.

family a description of the error distribution used to specify the model. This should
be a character string, either “gaussian”, “binomial”, or “survival”. Can be
abbreviated. By default the gaussian family is used.

Details

orig.names and covar.names are the same if the all covariates in X are continuous. However, if
there are at least one categorical variable in X with more than two categories, they are different.

Value

n.par returns a list containing the following components:

n.reg.par the number of regression parameters;

n.covar the number of covariates;

n.sample the number of samples/observations;

orig.names the original variable names excluding dummy variable names;

covar.names the variables names, including any dummy variable names (if applicable).

Author(s)

Hassan Pazira
Maintainer: Hassan Pazira <hassan.pazira@radboudumc.nl>

40 Nurses

Examples

#--------------------
family = "gaussian"
#--------------------

X0 <- data.frame(x1 = rnorm(50), # standard normal variable
x2 = sample(0:2, 50, replace=TRUE), # categorical variable
x3 = sample(0:1, 50, replace=TRUE)) # dichotomous variable

n.par(X0) # without dummy variables
X0$x2 <- as.factor(X0$x2)
X0$x3 <- as.factor(X0$x3)
n.par(X0) # with dummy variables

X1 <- data.frame(Intercept = rep(1,30),
x1 = rnorm(30), # continuous variable
x2 = sample(0:2, 30, replace=TRUE)) # categorical variable

n.par(X1) # without dummy variables
X1$x2 <- as.factor(X1$x2)
n.par(X1) # without dummy variables

a list of two data sets:
X01 <- list(X0, X1)
n.par(X01)

Nurses Nurses’ stress in different hospitals

Description

This dataset comprises three-level simulated data extracted for a hypothetical study investigating
stress levels within hospital settings. The dataset focuses on nurses working in specific wards
within various hospitals. It includes several variables, such as nurse age (measured in years), nurse
experience (measured in years), nurse gender (0 for male, 1 for female), ward type (0 for general
care, 1 for special care), and hospital size (0 for small, 1 for medium, 2 for large). The dataset
in the package is obtained from the original dataset by leaving out some of the unused columns.

Usage

data(Nurses)

Source

https://multilevel-analysis.sites.uu.nl/datasets/

References

Hox, J., Moerbeek, M., and van de Schoot, R. (2010). Multilevel Analysis: Techniques and Appli-
cations, Second Edition (2nd ed.). Routledge. <https://doi.org/10.4324/9780203852279>

summary.bfi 41

summary.bfi Summarizing BFI Fits

Description

Summary method for an object with class ’bfi’ created by the MAP.estimation and bfi functions.

Usage

S3 method for class 'bfi'
summary(object,

cur_mat = FALSE,
digits = max(3, getOption("digits") - 3),
...)

Arguments

object fitted bfi object.

cur_mat logical; if TRUE, minus the curvature matrix around the estimated parameters is
returned and printed. Default is FALSE.

digits significant digits in printout.

... additional arguments affecting the summary produced.

Details

summary.bfi() gives information about the MAP estimates of parameters of the model. It can be
used for the bfi objects built by the MAP.estimation and bfi functions.

The output of the summary method shows the details of the model, i.e. formula, family and link
function used to specify the generalized linear model, followed by information about the estimates,
standard deviations and credible intervals. Information about the log-likelihood posterior and con-
vergence status are also provided.

By default, summary.bfi function does not return (minus) the curvature matrix, but the user can
use cur_mat = TRUE to print it.

Value

summary.bfi returns an object of class summary.bfi, a list with the following components:

theta_hat the component from object. The last element of this vector is the estimate of the
dispersion parameter (sigma2) if family = "gaussian". See the MAP.estimation
and bfi functions.

A_hat the component from object. See the MAP.estimation and bfi functions.

sd the component from object. If family = "gaussian", the last element of this
vector is the square root of the estimated dispersion. See the MAP.estimation
and bfi functions.

42 summary.bfi

Lambda the component from object. See the MAP.estimation function.

formula the component from object. See the MAP.estimation function.

n the component from object. See the MAP.estimation function.

np the component from object. See the MAP.estimation function.

family the component from object. See the MAP.estimation function.

intercept the component from object. See the MAP.estimation function.

convergence the component from object. See the MAP.estimation function.

control the component from object. See the MAP.estimation function.

stratified the component from object. See the bfi function.

estimate the estimated regression coefficients, i.e., without the estimate sigma2.

logLikPost the value of the log-likelihood posterior density evaluated at estimates (theta_hat).

link the link function only for GLMs, not for the survival family. By default the
gaussian family with identity link function and the binomial family with
logit link function are used.

dispersion the estimated variance of the random error, i.e., sigma2. The dispersion is
taken as 1 for the binomial family.

CI a 95% credible interval of the MAP estimates of the parameters.

Author(s)

Hassan Pazira
Maintainer: Hassan Pazira <hassan.pazira@radboudumc.nl>

See Also

MAP.estimation and bfi

Examples

#-------------
y ~ Gaussian
#-------------
model assumption:
theta <- c(1, 2, 3, 4, 1.5) # coefficients and sigma2 = 1.5

#----------------
Data Simulation
#----------------
n <- 40
X <- data.frame(x1=rnorm(n), # continuous variable

x2=sample(1:3, n, replace=TRUE)) # categorical variable
Xx2_1 <- ifelse(X$x2 == '2', 1, 0)
Xx2_2 <- ifelse(X$x2 == '3', 1, 0)
X$x2 <- as.factor(X$x2)
eta <- theta[1] + theta[2] * X$x1 + theta[3] * Xx2_1 + theta[4] * Xx2_2
mu <- gaussian()$linkinv(eta)
y <- rnorm(n, mu, sd = sqrt(theta[5]))

surv.simulate 43

#----------------
MAP estimations
#----------------
Lambda <- inv.prior.cov(X, lambda = c(0.1, 0.5), family = "gaussian")
fit <- MAP.estimation(y, X, family = "gaussian", Lambda)
class(fit)

#-------------------------
Summary of MAP estimates
#-------------------------
summary(fit)
sumfit <- summary(fit, cur_mat = TRUE)
sumfit$estimate
sumfit$logLikPost
sumfit$dispersion
sumfit$CI
class(sumfit)

surv.simulate Generate survival data with predefined censoring rates for propor-
tional hazards models

Description

surv.simulate simulates one or multiple (right-censored) survival datasets for proportional haz-
ards models by simultaneously incorporating a baseline hazard function from three different sur-
vival distributions (exponential, Weibull and Gompertz), a random censoring time generated from
a uniform distribution with an known/unknown upper limit, and a set of baseline covariates. When
the upper limit of the uniform censoring time distribution is unknown, surv.simulate can be used
separately to obtain the upper limit with a predefined censoring rate.

Usage

surv.simulate(L = 1,
Z,
beta,
a,
b,
u1 = 0,
u2,
cen_rate,
gen_data_from = c("exp", "weibul", "gomp"),
only_u2 = FALSE,
n.rep = 100,
Trace = FALSE)

44 surv.simulate

Arguments

L the number of datasets to be generated. Default is L = 1.
Z a list of L design matrices of dimension nℓ × p, where nℓ is the number of

samples observed for the ℓth dataset and p is the number of covariables. When L
= 1, Z can be a matrix.

beta the vector of the (true) coefficients values, with a length of p (the number of
covariates).

a scale parameter, which should be non-negative. See ‘Details’ for the form of the
cumulative hazard that can be used.

b shape/location parameter, which should be non-negative. It is not used when
gen_data_from = “exp”. See ‘Details’ for the form of the cumulative hazard
that can be used.

u1 a known non-negative lower limit of the uniform distribution for generating ran-
dom censoring time. Default is u1 = 0. If cen_rate is not equal to 0, then u1
does not need to be defined.

u2 an non-negative upper limit of the uniform random censoring time distribution.
The upper limit can be unknown (u2 = NULL, the default), or predefined. When
this argument is assumed to be unknown, u2 = NULL, it is calculated by the al-
gorithm within surv.simulate(). However, if the argument u2 is known, the
censoring rate cannot be predefined (meaning there is no control over it) and is
calculated based on the generated dataset. See ‘Details’ and ‘References’.

cen_rate a value representing the proportion of observations in the simulated survival
data that are censored. The range of this argument is from 0 to 1. When the
upper limit is known, cen_rate can nor be predefined. If there is no censoring
(cen_rate = 0), the lower (u1) and upper (u2) limits of the uniform distribution
do not need to be specified.

gen_data_from a description of the distribution from which the time to event is generated. This
is a character string and can be exponential (“exp”), Weibull (“weibul”), or
Gompertz (“gomp”). Can be abbreviated. By default, the exponential distri-
bution is used.

only_u2 logical flag for calculating only the upper limit of the uniform censoring time
distribution. If only_u2 = TRUE, the dataset(s) are not generated. If only_u2 =
TRUE, the arguments Z and u2 do not need to be specified, and cen_rate should
not be set to 0. Default is only_u2 = FALSE.

n.rep a scalar specifying the number of iterations. This argument is exclusively used
in the case of the Gompertz distribution. Default is 100.

Trace logical flag indicating whether the output of the desired u2 and the censoring
proportion for different datasets should be produced for each iteration. It works
gen_data_from = “gomp”.

Details

surv.simulate function generates L simulated right-censored survival datasets from exponential,
Weibull, or Gompertz distributions, incorporating the covariates, Z, distributed according to a multi-
variate normal distribution, with censoring time generated from a uniform distribution Uniform(u1,
u2), where u1 is known but u2 can be either known or unknown.

surv.simulate 45

surv.simulate() can also be used to calculate the unknown upper limit of the uniform distribution,
u2, with a predefined censoring rate. To do this, set u2 = NULL and only_u2 = TRUE. In this case, the
datasets are not generated; only u2 is.

surv.simulate() uses a root-finding algorithm to select the censoring parameter that achieves
predefined censoring rates in the simulated survival data.

When gen_data_from = “exp”:

• the cumulative baseline hazard function is considered as Λ0 = at,

• the event time for the ℓth dataset, Tℓ, is computed by −log(u) exp(−Zℓβ)/a, where u follows
a standard uniform distribution;

For gen_data_from = “weibul”:

• the cumulative hazard function is as Λ0 = atb,

• the event time is computed by Tℓ = (−log(u) exp(−Zℓβ)/a)
1/b, where u follows a standard

uniform distribution;

For gen_data_from = “gomp”:

• the cumulative hazard function is as Λ0 = a(exp(bt)− 1)/b,

• the event time is computed by Tℓ = log(1 − log(u) exp(−Zℓβ)b/a)/b, where u follows a
standard uniform distribution;

Finally the survival time is obtained by T̃ℓ = min{Tℓ, Cℓ}.

The function will be updated for gen_data_from = “gomp”.

Value

surv.simulate returns a list containing the following components:

D a list of L data frames, with dimension nℓ × (p + 2). The first and second
columns, named time and status, contain the simulated survival time and the
censoring indicator, respectively, where 0 means censored and 1 means uncen-
sored;

censor_propor the vector of censoring proportions in the simulated datasets D, containing L
elements;

u1 the lower limit of the uniform distribution used to generate random censoring
times with a predefined censoring rate. Sometimes this output is less than the
value entered by the user, as it is adjusted to achieve the desired amount of
censoring rate;

u2 the upper limit of the uniform distribution used to generate random censoring
times. If u2 = NULL, this output will be the estimated upper limit necessary to
achieve the desired censoring rate across the L datasets.

Author(s)

Hassan Pazira
Maintainer: Hassan Pazira <hassan.pazira@radboudumc.nl>

46 surv.simulate

References

Pazira H., Massa E., Weijers J.A.M., Coolen A.C.C. and Jonker M.A. (2025b). Bayesian Federated
Inference for Survival Models, Journal of Applied Statistics (Accepted). <https://arxiv.org/abs/2404.17464>

See Also

MAP.estimation

Examples

Setting a seed for reproducibility
set.seed(1123)

#-------------------------
Simulating Survival data
#-------------------------
N <- c(7, 10, 13) # the sample sizes of 3 datasets
beta <- 1:4
p <- length(beta)
L <- 3

Define a function to generate multivariate normal samples
mvrnorm_new <- function(n, mu, Sigma) {

pp <- length(mu)
e <- matrix(rnorm(n * pp), nrow = n)
return(crossprod(t(e), chol(Sigma)) + matrix(mu, n, pp, byrow = TRUE))

}
Z <- list()
for (z in seq_len(L)) {

Z[[z]] <- mvrnorm_new(n = N[z], mu = rep(0, p),
Sigma = diag(rep(1, p),p))

colnames(Z[[z]]) <- paste0("Z_",seq_len(ncol(Z[[z]])))
}

One simulated dataset from exponential distribution with no censoring:
surv_data <- surv.simulate(Z = Z[[1]], beta = beta, a = exp(-.9),

cen_rate = 0, gen_data_from = "exp")
surv_data
surv_data$D[[1]][,1:2] # The simulated survival data

Calculate only 'u2' with a predefined censoring rate of 0.4:
u2_new <- surv.simulate(Z = Z[1:2], beta = beta, a = exp(-.9),

b = exp(1.8), u1 = 0.1, only_u2 = TRUE,
cen_rate = 0.4, gen_data_from = "weibul")$u2

u2_new

Two simulated datasets with a known 'u2':
Using 'u2_new' to help control over censoring rate (was chosen 0.4)
surv.simulate(Z = Z[1:2], beta = beta, a = exp(-.9), b = exp(1.8),

u1 = 0.05, u2 = u2_new, gen_data_from = "weibul")

Three simulated datasets from 'weibul' with an unknown 'u2':

trauma 47

surv.simulate(Z = Z, beta = beta, a = exp(-1), b = exp(1),
u1 = 0.01, cen_rate = 0.3, gen_data_from = "weibul")

Two simulated datasets from 'gomp' with unknown 'u2' and censoring rate of 0.3:
surv.simulate(Z = Z[2:3], beta = beta, a = exp(1), b = exp(2), u1 = 0.1,

cen_rate = 0.3, gen_data_from = "gomp", Trace = TRUE)

trauma Trauma patients from different hospitals

Description

This data set consists of data of 371 trauma patients from three hospitals. The binary variable
mortality is used as an outcome, and variables age, sex, the Injury Severity Score (ISS, rang-
ing from 1 (low) to 75 (high)) and the Glasgow Coma Scale (GCS, which expresses the level of
consciousness, ranging from 3 (low) to 15 (high)) are used as covariates. There are three types of
hospitals: peripheral hospital without a neuro-surgical unit (Status = 1), peripheral hospital with
a neuro-surgical unit (Status = 2), and academic medical center (Status = 3). Originally, the data
come from a multi center study collected with a different aim. For educational purposes minor
changes have been made, see the references below.

Usage

data(trauma)

References

Jonker M.A., Pazira H. and Coolen A.C.C. (2024). Bayesian federated inference for estimating
statistical models based on non-shared multicenter data sets, Statistics in Medicine, 43(12): 2421-
2438. <https://doi.org/10.1002/sim.10072>

Draaisma J.M.Th, de Haan A.F.J., Goris R.J.A. (1989). Preventable Trauma Deaths in the Nether-
lands - A prospective Multicentre Study, The journal of Trauma, Vol. 29(11), 1552-1557.

Index

∗ array
b.diag, 3
inv.prior.cov, 24

∗ bayesian
bfi, 4
MAP.estimation, 29

∗ datagen
surv.simulate, 43

∗ datasets
Nurses, 40
trauma, 47

∗ federated
bfi, 4

∗ models
bfi, 4
MAP.estimation, 29
summary.bfi, 41

∗ nonparametric
bfi, 4
MAP.estimation, 29

∗ optimize
MAP.estimation, 29

∗ package
BFI-package, 2

∗ regression
bfi, 4
MAP.estimation, 29
n.par, 39
summary.bfi, 41

∗ survival
bfi, 4
hazards.fun, 21
MAP.estimation, 29
summary.bfi, 41
surv.simulate, 43

b.diag, 3
bfi, 4, 33, 36, 41, 42
BFI-package, 2

hazards.fun, 21

inv.prior.cov, 8, 24, 30, 36

MAP.estimation, 8, 23, 28, 29, 41, 42, 46

n.par, 39
Nurses, 40

stats, 34
summary (summary.bfi), 41
summary.bfi, 36, 41
surv.simulate, 43

trauma, 47

48

	BFI-package
	b.diag
	bfi
	hazards.fun
	inv.prior.cov
	MAP.estimation
	n.par
	Nurses
	summary.bfi
	surv.simulate
	trauma
	Index

