Package ‘infixit’

May 28, 2025

Title Helpful Additional Infix Functions
Version 0.3.1

Description Infix functions in R are those that comes between its
arguments such as %in%, +, and *. These are useful in R
programming when manipulating data, performing logical operations,
and making new functions. 'infixit' extends the infix functions
found in R to simplify frequent tasks, such as finding elements
that are NOT in a set, in-line text concatenation, augmented assignment
operations, additional logical and control flow operators, and
identifying if a number or date lies between two others.

License MIT + file LICENSE
URL https://github.com/prlitics/infixit

BugReports https://github.com/prlitics/infixit/issues
Encoding UTF-8

RoxygenNote 7.3.2

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

NeedsCompilation no

Author Peter Licari [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0001-9701-6006>)

Maintainer Peter Licari <prlicaril3@gmail.com>
Repository CRAN
Date/Publication 2025-05-28 09:40:02 UTC

Contents

ds_allFalse
As_allNA . . s
ds_length_zero e
extended-null-default

https://github.com/prlitics/infixit
https://github.com/prlitics/infixit/issues
https://orcid.org/0000-0001-9701-6006

2 .is_allFalse
null-default 5
GobtWnTo e e e e e e 6
Do-=T0 e 7
Gonand%o e e e e e 8
GoninTo e e e 9
Go+=T0 e e 10
Do+%0 . . . 11
DoN=0 e 12
Dol=T0 e 13
DoF=To e 14
DoXOTT0 . . o o e e e e e e e e e e e e e e 15

Index 16

.is_allFalse Tests if an object is entirely comprised of FALSEs

Description

This function tests if a passed object is entirely comprised of FALSE values.

Usage

.is_allFalse(x)

Arguments

X

Details

The object to test if is entirely comprised of FALSE values

This function is exported in order to provide one of the default tests for the %| | |% function and is
not really intended for use outside of that context.

Value

A boolean (TRUE or FALSE)

Examples

{

.is_allFalse(c(FALSE,FALSE,TRUE)) # Will return FALSE

}

.is_alINA 3

.is_allNA Tests if a vector is entirely comprised of NAs

Description

This function tests if a passed object is entirely comprised of NA values.

Usage
.is_allNA(x)

Arguments

X The object to test if is entirely comprised of NA values

Details
This function is exported in order to provide one of the default tests for the %| | |% function and is
not really intended for use outside of that context.

Value

A boolean (TRUE or FALSE)

Examples
{
.is_alINA(c(NA,NA,"NA")) # Will return FALSE
}
.is_length_zero Tests if an object is of length 0
Description

This function tests if a passed object is of length 0.

Usage

.is_length_zero(x)

Arguments

X The object to test if is length(0)

4 extended-null-default

Details
This function is exported in order to provide one of the default tests for the %| | | % function and is
not really intended for use outside of that context.

Value

A boolean (TRUE or FALSE)

Examples

{
.is_allFalse(c(FALSE,FALSE,TRUE)) # Will return FALSE

3

extended-null-default Expanded default operator

Description

The %| | % operator will return a default value, defined by the right-hand object, if the left-hand value
resolves as NULL. However, there may be times when users want more than just NULL values to return
the default but, also, values that are NA, FALSE, and those that are length O (such as character(0)
or integer(0)).

Usage
lhs %||1% rhs

Arguments
lhs The left-hand side, the value(s) to be evaluated as.
rhs The right-hand side, the value(s) to be returned if lhs evaluates as one of the
covered values.
Details

The expanded default operator covers the following cases:

e NULL

* An atomic FALSE

* A vector where all values are FALSE
* An atomic NA

* A vector where all values are NA

* An object of length 0.

null-default 5

Users have the ability to add additional tests via options(infixit.extended_default_tests).
Users can change the current list—including by adding the name of a testing function (i.e., one that
returns a Boolean value) that is currently defined in an environment accessible to the function (e.g.,
in the global environment).

Value

An atomic value or vector the same length as the left-hand side input.

Examples

{

NULL %]|||% 'fizzbuzz' #returns fizzbuzz
FALSE %|||% 'fizzbuzz' #also returns fizzbuzz
NA %|||% 'fizzbuzz' #still returns fizzbuzz
"test' %|||% 'fizzbuzz'#returns 'test'

null-default Default NULL operator

Description

This operator is seen in {rlang} and has been included in base R since version 4.4.0. If the left-
hand side is NULL, it will automatically return the value of the right-hand side. This is useful for
programming to ensure a function or process returns a non-null default.

Usage
X %1%y

Arguments

X The left-hand side, the value(s) to be evaluated as either NULL or not.
y The right-hand side, the value(s) to be returned if 1hs evaluates to NULL.

Value

An atomic value or vector the same length as the left-hand side input.

Examples

{
NULL %||% 'fizzbuzz' #returns fizzbuzz
"test' %||% 'fizzbuzz'#returns 'test'

}

6 %btwn%

%btwn% Between Infix Operator

Description

Currently in R, if you want to test if a value is between two others, you have to set it up in a
cumbersome manner: X > Y & X < Z. %btwn% simplifies the operation into a single call: X %btwn%
c(Y, 2).

Usage

lhs %btwn% rhs

Arguments
lhs The left-hand side, the value(s) to be compared.
rhs The right-hand side, the comparative range. Must be a numeric vector of length
2 with the smaller value prior to the larger value. Identical values can be passed.
Details

By default, %btwn% evaluates inclusively. That is, if the right-hand side is c(1, 5) and the left-hand

side is c(1,5), it will evaluate as TRUE TRUE. If one wants to adjust this default behavior, they

can adjust the "infix.btwn" option to be either inclusive for the lower-bound ("["), exclusive for the

lower- bound ("("), inclusive for the upper-bound ("]"), or exclusive for the upper-bound (")"). To

set an inclusive lower-bound but exclusive upper-bound, for example, you would do as follows:
options(infixit.btwn=c("[", ")")). Additional options allow you to set which date formats

are automatically parsed when comparing if one date is within another (infixit.btwn.datetimefmt),

and whether %btwn% will ignore NA values in the comparison or return them as FALSE (infixit.btwn.ignore_na)

Value

A Boolean vector the same length as the left-hand side input.

Examples

{
13 %btwn% c(12.5, 15) #returns TRUE

}

%-=% 7

%==% Subtraction variable reassignment

Description

Updates the left-hand, numeric type object by subtracting the right-hand value from it, reassigning
the difference to the left-hand object.

Usage

lhs %-=% rhs

Arguments
lhs An numeric object existing in the global/ parent environment.
rhs A numeric value to subtract from the lhs

Details

Currently in R, if you want to update the value of a numeric object to be the outcome of some
arithmetic operation, you have to initialize the object and then reassign it. For example: apple <-
1 and then apple <- apple - 1. This sort of thing is generally referred to as augmented variable
assignment. This function allows users to update the value of an object through subtracting the
value on the right-hand side.

Value

Returns the arithmetically-updated left-hand object into the environment the operation was per-
formed in.

Examples
{
example <- 10

example %-=% 3
example # returns 7

}

8 %nand%
%nand% NAND infix operator
Description
This is a logical operator that implements NAND (NOT AND).
Usage
lhs %nand% rhs
Arguments
lhs The left-hand side(s).
rhs The right-hand side value(s).
Details
The NAND truth table is the inverse of the AND table:
LHS RHS Value
TRUE TRUE FALSE
TRUE FALSE TRUE
FALSE TRUE TRUE
FALSE FALSE TRUE
Value
An atomic value or vector the same length as the left-hand side input.
Examples

{
TRUE %nand% TRUE # Evaluates to FALSE

FALSE %nand% TRUE # Evaluates to TRUE
FALSE %nand%FALSE # Evaluates to TRUE

3

%nin% 9

%nin% Not-In Infix Operator

Description

This tests whether the elements on the left-hand side is not within the elements on the right-hand
side. In effect, it is a cleaner, parsimonious way of articulating ! (Lhs %in% rhs). See the help for
match for additional documentation on matching.

Usage

lhs %nin% rhs

Arguments
lhs The left-hand side, element(s) to be sought in the rhs.
rhs The right-hand side; element(s) to be compared against the lhs for possible mem-
bership.
Details

Following the convention of %in%, which is actually a call to match, %nin% is defined as: match(lhs,
rhs, nomatch = @) == 0. (In the case of %in%, the final comparison is > @; as it is looking for in-
dices of the location of 1hs[i] within rhs, any positive match will be greater than 0 by definition
since 'R’ is a 1-index language rather than a 0-index language such as, e.g., Python).

Value

Returns a Boolean vector the length of lThs conveying whether each element is unrepresented in the
elements of rhs.

Examples
{

"apple” %nin% c("carrot”, "kiwi" ,"pear”)

10 %+=%

%+=% Addition variable reassignment

Description

Updates the left-hand, numeric type object by adding the right-hand value to it, reassigning the sum
to the left-hand object.

Usage

lhs %+=% rhs

Arguments
lhs An numeric object existing in the global/ parent environment.
rhs A numeric value to add to the sum

Details

Currently in R, if you want to update the value of a numeric object to be the outcome of some
arithmetic operation, you have to initialize the object and then reassign it. For example: apple <-
1 and then apple <- apple + 1. This sort of thing is generally referred to as augmented variable
assignment. This function allows users to update the value of an object through adding the value on
the right-hand side.

Value

Returns the arithmetically-updated left-hand object into the environment the operation was per-
formed in.

Examples
{
example <- 5

example %+=% 8
example # returns 13

}

%+ % 11

%+% Paste Infix Operator

Description

Many programming languages utilize + as a means of concatenating strings. In standard R, however,
+ will return an error when used with strings. %+% provides this ability for parsimonious string
concatenation.

Usage

lhs %+% rhs

Arguments
lhs The left-hand side.
rhs The right-hand side.
Details

By default, it uses paste® under the hood, but this can be shifted to paste by running options(infixit.paste
= "paste@"). By default (as with paste), this will have the seperator be a single space (" ") be-

tween the pasted objects. This behavior can be changed with the infixit.paste_sep option. E.g.,
options(infixit.paste_sep="1]")

Value

A string pasting the rhs to the lhs.

Examples
{
b <- "An additional sentence.”

"This is a sentence. " %t% b

}

12 %"=%

%*=% Exponentiation variable reassignment

Description

Updates the left-hand, numeric type object by raising it to the power of the right-hand value, reas-
signing the result to the left-hand object.

Usage

lhs %*=% rhs

Arguments
lhs An numeric object existing in the global/ parent environment.
rhs A numeric value to raise the lhs by

Details

Currently in R, if you want to update the value of a numeric object to be the outcome of some
arithmetic operation, you have to initialize the object and then reassign it. For example: apple <-
2 and then apple <- apple * 3. This sort of thing is generally referred to as augmented variable
assignment. This function allows users to update the value of an object through raising it to the
power of the value on the right-hand side.

Value

Returns the arithmetically-updated left-hand object into the environment the operation was per-
formed in.

Examples
{
example <- 2

example %*=% 3
example # returns 8

}

%/=% 13

%/ =% Division variable reassignment

Description

Updates the left-hand, numeric type object by dividing it by the right-hand value, reassigning the
quotient to the left-hand object.

Usage

lhs %/=% rhs

Arguments
lhs An numeric object existing in the global/ parent environment.
rhs A numeric value to divide the lhs by

Details

Currently in R, if you want to update the value of a numeric object to be the outcome of some
arithmetic operation, you have to initialize the object and then reassign it. For example: apple <-
10 and then apple <- apple / 2. This sort of thing is generally referred to as augmented variable
assignment. This function allows users to update the value of an object through dividing the value
on the right-hand side.

Value

Returns the arithmetically-updated left-hand object into the environment the operation was per-
formed in.

Examples
{
example <- 10

example %/=% 2
example # returns 5

}

14 %*=%

%*=% Multiplication variable reassignment

Description

Updates the left-hand, numeric type object by multiplying it by the right-hand value, reassigning
the product to the left-hand object.

Usage

lhs %*=% rhs

Arguments
lhs An numeric object existing in the global/ parent environment.
rhs A numeric value to multiply the lhs by

Details

Currently in R, if you want to update the value of a numeric object to be the outcome of some
arithmetic operation, you have to initialize the object and then reassign it. For example: apple <-
2 and then apple <- apple * 3. This sort of thing is generally referred to as augmented variable
assignment. This function allows users to update the value of an object through multiplying it by
the value on the right-hand side.

Value

Returns the arithmetically-updated left-hand object into the environment the operation was per-
formed in.

Examples
{
example <- 3

example %*=% 4
example # returns 12

}

Joxor%

15

%Xors% XOR infix operator

Description

This is a logical operator that implements XOR. (Exclusive or).

Usage

lhs %xor% rhs

Arguments

lhs The left-hand side(s).

rhs The right-hand side value(s).
Details

The XOR truth-table is as follows:

LHS RHS
TRUE TRUE
TRUE FALSE
FALSE TRUE

FALSE FALSE

In contrast with the standard OR, XOR evaluates to FAISE if both arguments are TRUE.

Value

Value
FALSE
TRUE
TRUE
FALSE

An atomic value or vector the same length as the left-hand side input.

Examples

{
TRUE %xor% TRUE # Evaluates to FALSE

FALSE %xor% TRUE # Evaluates to TRUE
3

Index

.is_allFalse, 2
.is_allNA, 3
.is_length_zero, 3
%*=%, 14
%+=%, 10

%+%, 11

%==%, T

%/ =%, 13
%"=%, 12
%btwn%, 6
%nand%, 8
%nin%, 9
%xork, 15

extended-null-default, 4

null-default, 5

16

	.is_allFalse
	.is_allNA
	.is_length_zero
	extended-null-default
	null-default
	btwn
	-=
	nand
	nin
	+=
	+
	^=
	/=
	*=
	xor
	Index

