
Package ‘gammi’
January 30, 2025

Type Package

Title Generalized Additive Mixed Model Interface

Version 0.2

Date 2025-01-30

Description An interface for fitting generalized additive models (GAMs) and generalized addi-
tive mixed models (GAMMs) using the 'lme4' package as the computational engine, as de-
scribed in Helwig (2024) <doi:10.3390/stats7010003>. Supports default and formula meth-
ods for model specification, additive and tensor product splines for capturing nonlinear ef-
fects, and automatic determination of spline type based on the class of each predictor. In-
cludes an S3 plot method for visualizing the (nonlinear) model terms, an S3 pre-
dict method for forming predictions from a fit model, and an S3 summary method for conduct-
ing significance testing using the Bayesian interpretation of a smoothing spline.

License GPL (>= 2)

Encoding UTF-8

Depends R (>= 3.5.0)

Imports lme4, Matrix, methods

NeedsCompilation no

Author Nathaniel E. Helwig [aut, cre]

Maintainer Nathaniel E. Helwig <helwig@umn.edu>

Repository CRAN

Date/Publication 2025-01-30 14:50:01 UTC

Contents
exam . 2
gammi . 3
plot.gammi . 14
predict.gammi . 15
spline.basis . 18
spline.model.matrix . 21
StartupMessage . 23
summary.gammi . 23
visualizers . 25

1

https://doi.org/10.3390/stats7010003

2 exam

Index 28

exam Cross-Classified Examination Data

Description

Scores on secondary school leaving examinations (response) and verbal reasoning scores in primary
school (fixed effect) for 3435 students in Fife, Scotland. The students are cross-classified in 148
primary schools (random effect) and 19 secondary schools (random effect).

Usage

data("exam")

Format

A data frame with 3435 observations on the following 4 variables.

VRQ.score Verbal Reasoning Quotient obtained in primary school (integer vector ranging from 70
to 140)

Exam.score Leaving examination score obtained in secondary school (integer vector ranging from
1 to 10)

Primary.school Primary school identifier (factor with 148 levels)

Secondary.school Secondary school identifier (factor with 19 levels)

Details

The VRQ scores were obtained at age 12 (right before entering secondary school), and the Exam
scores were obtained at age 16 (right before leaving secondary school). The VRQ scores are con-
structed to have a population mean of 100 and population standard deviation of 15. The goal is
to predict the leaving Exam scores from the VRQ scores while accounting for the primary and
secondary school cross-classifications.

Source

Data Obtainable from: https://www.bristol.ac.uk/cmm/team/hg/msm-3rd-ed/datasets.html

References

Goldstein, H. (2011). Multilevel Statistical Models, 4th Edition. Chapter 12: Cross-classified data
structures (pages 243-254). doi:10.1002/9780470973394

Paterson, L. (1991). Socio-economic status and educational attainment: a multidimensional and
multilevel study. Evaluation and Research in Education, 5, 97-121. doi:10.1080/09500799109533303

https://www.bristol.ac.uk/cmm/team/hg/msm-3rd-ed/datasets.html
https://doi.org/10.1002/9780470973394
https://doi.org/10.1080/09500799109533303

gammi 3

Examples

load 'gammi' package
library(gammi)

load 'exam' help file
?exam

load data
data(exam)

header of data
head(exam)

fit model
mod <- gammi(Exam.score ~ VRQ.score, data = exam,

random = ~ (1 | Primary.school) + (1 | Secondary.school))

plot results
plot(mod)

summarize results
summary(mod)

variance parameters
mod$VarCorr

gammi Fit a Generalized Additive Mixed Model

Description

Fits generalized additive models (GAMs) and generalized additive mixed model (GAMMs) using
lme4 as the tuning engine. Predictor groups can be manually input (default S3 method) or inferred
from the model (S3 "formula" method). Smoothing parameters are treated as variance components
and estimated using REML/ML (gaussian) or Laplace approximation to ML (others).

Usage

gammi(x, ...)

Default S3 method:
gammi(x,

y,
group,
family = gaussian,
fixed = NULL,
random = NULL,
data = NULL,

4 gammi

REML = TRUE,
control = NULL,
start = NULL,
verbose = 0L,
nAGQ = 10L,
subset,
weights,
na.action,
offset,
mustart,
etastart,
...)

S3 method for class 'formula'
gammi(formula,

data,
family = gaussian,
fixed = NULL,
random = NULL,
REML = TRUE,
control = NULL,
start = NULL,
verbose = 0L,
nAGQ = 10L,
subset,
weights,
na.action,
offset,
mustart,
etastart,
...)

Arguments

x Model (design) matrix of dimension nobs by nvars (n× p).

y Response vector of length n.

group Group label vector (factor, character, or integer) of length p. Predictors with the
same label are assumed to have the same variance parameter.

formula Model formula: a symbolic description of the model to be fitted. Uses the same
syntax as lm and glm.

family Assumed exponential family (and link function) for the response variable.

fixed For default method: a character vector specifying which group labels should be
treated as fixed effects. For formula method: a one-sided formula specifying the
fixed effects model structure.

random A one-sided formula specifying the random effects structure using lme4 syntax.
See Note.

gammi 5

data Optional data frame containing the variables referenced in formula, fixed,
and/or random.

REML Logical indicating whether REML versus ML should be used to tune the smooth-
ing parameters and variance components.

control List containing the control parameters (output from lmerControl or glmerControl).

start List (with names) of starting parameter values for model parameters.

verbose Postive integer that controls the level of output displayed during optimization.

nAGQ Numer of adaptive Gaussian quadrature points. Only used for non-Gaussian
responses with a single variance component.

subset Optional expression indicating the subset of rows to use for the fitting (defaults
to all rows).

weights Optional vector indicating prior observations weights for the fitting (defaults to
all ones).

na.action Function that indicates how NA data should be dealt with. Default (of na.omit)
will omit any observations with missing data on any variable.

offset Optional vector indicating each observation’s offset for the fitting (defaults to all
zeros).

mustart Optional starting values for the mean (fitted values).

etastart Optional starting values for the linear predictors.

... Optional arguments passed to the spline.model.matrix function, e.g., spline
knots or df for each term.

Details

Fits a generalized additive mixed model (GAMM) of the form

g(µ) = f(X,Z) +X⊤β + Z⊤α

where

• µ = E(Y |X,Z) is the conditional expectation of the response Y given the predictor vectors
X = (X1, . . . , Xp)

⊤ and Z = (Z1, . . . , Zq)
⊤

• the function g(·) is a user-specified (invertible) link function

• the function f(·) is an unknown smooth function of the predictors (specified by formula)

• the vector X is the fixed effects component of the design (specified by fixed)

• the vector Z is the random effects component of the design (specified by random)

• the vector β contains the unknown fixed effects coefficients

• the vector α contains the unknown Gaussian random effects

Note that the mean function f(·) can include main and/or interaction effects between any number
of predictors. Furthermore, note that the fixed effects in X⊤β and the random effects in Z⊤α are
both optional.

6 gammi

Value

An object of class "gammi" with the following elements:

fitted.values model predictions on the data scale
linear.predictors

model predictions on the link scale
coefficients coefficients used to make the predictions
random.coefficients

coefficients corresponding to the random argument, i.e., the BLUPs.
term.labels labels for the terms included in the coefficients

dispersion estimated dispersion parameter = deviance/df.residual when is.null(random)

vcovchol Cholesky factor of covariance matrix such that tcrossprod(vcovchol) gives
the covariance matrix for the combined coefficient vector c(coefficients,
random.coefficients)

family exponential family distribution (same as input)
logLik log-likelihood for the solution
aic AIC for the solution
deviance model deviance, i.e., two times the negative log-likelihood
null.deviance deviance of the null model, i.e., intercept only. Will be NA if the random argu-

ment is used.
r.squared proportion of null deviance explained = 1 - deviance/null.deviance. Will be

NA if the random argument is used; see Note.
nobs number of observations used in fit
leverages leverage scores for each observation
edf effective degrees of freedom = sum(leverages)

df.random degress of freedom corresponding to random formula, i.e., number of co/variance
parameters

df.residual residual degrees of freedom = nobs - edf

x input x matrix (default method only)
group character vector indicating which columns of x belong to which model terms
scale numeric vector giving the scale parameter used to z-score each term’s data
fixed fixed effects terms (default method) or formula (formula method); will be NULL

if no fixed terms are included
random random effects formula
mer object of class "merMod", such as output by lmer, with model fit information on

a standardized scale
VarCorr data frame with variance and covariance parameter estimates from mer trans-

formed back to the original scale
call function call
data input data
contrasts list of contrasts applied to fixed terms; will be NULL if no fixed terms are in-

cluded
spline.info list of spline parameters for terms in x or formula
formula input model formula

gammi 7

Random Syntax

The random argument uses standard lmer syntax:

• (1 | g) for a random intercept for each level of g

• (1 | g1) + (1 | g2) for random intercepts for g1 and g2

• (1 | g1/g2) = (1 | g1) + (1 | g1:g2) for random intercepts for g1 and g2 nested within g1

• (x | g) = (1 + x | g) for a correlated random intercept and slope of x for each level of g

• (x || g) = (1 | g) + (0 + x | g) for an uncorrelated random intercept and slope of x for each
level of g

Warning

For stable computation, any terms entered through x (default method) or formula and/or fixed
(formula method) are z-scored prior to fitting the model. Note that terms entered through random
are not standardized.

The "mer" component of the output contains the model fitting results for a z-scored version of the
original data (i.e., this fit is on a different scale). Consequently, the "mer" component should not
be used for prediction and/or inference purposes. All prediction and inference should be conducted
using the plot, predict, and summary methods mentioned in the ‘See Also’ section.

The "VarCorr" component contains the estimated variance/covariance parameters transformed
back to the original scale.

Note

The model R-squared is the proportion of the null deviance that is explained by the model, i.e.,

r.squared = 1 - deviance / null.deviance

where deviance is the deviance of the model, and null.deviance is the deviance of the null model.

When the random argument is used, null.deviance and r.squared will be NA. This is because
there is not an obvious null model when random effects are included, e.g., should the null model in-
clude or exclude the random effects? Assuming that is it possible to define a reasonable null.deviance
in such cases, the above formula can be applied to calculate the model R-squared for models that
contain random effects.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using
lme4. Journal of Statistical Software, 67(1), 1–48. doi:10.18637/jss.v067.i01

Helwig, N. E. (2024). Precise tensor product smoothing via spectral splines. Stats, 7(1), 34-53,
doi:10.3390/stats7010003

https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.3390/stats7010003

8 gammi

See Also

plot.gammi for plotting effects from gammi objects

predict.gammi for predicting from gammi objects

summary.gammi for summarizing results from gammi objects

Examples

##############***############## EXAM EXAMPLE ##############***##############

load 'gammi' package
library(gammi)

load 'exam' help file
?exam

load data
data(exam)

header of data
head(exam)

fit model
mod <- gammi(Exam.score ~ VRQ.score, data = exam,

random = ~ (1 | Primary.school) + (1 | Secondary.school))

plot results
plot(mod)

summarize results
summary(mod)

#############***############# GAUSSIAN EXAMPLE #############***#############

#~~~Example 1: Single Predictor ~~~

generate data
n <- 1000
x <- seq(0, 1, length.out = n)
fx <- sin(2 * pi * x)
set.seed(1)
y <- fx + rnorm(n)

fit model via formula method
mod <- gammi(y ~ x)
mod

fit model via default method

gammi 9

modmat <- spline.model.matrix(y ~ 0 + x)
tlabels <- attr(modmat, "term.labels")
tassign <- attr(modmat, "assign")
g <- factor(tlabels[tassign], levels = tlabels)
mod0 <- gammi(modmat, y, g)
mod0

summarize fit model
summary(mod)

plot function estimate
plot(mod)

#~~~Example 2: Additive Model ~~~

mean function
eta <- function(x, z, additive = TRUE){

mx1 <- cos(2 * pi * (x - pi))
mx2 <- 30 * (z - 0.6)^5
mx12 <- 0
if(!additive) mx12 <- sin(pi * (x - z))
mx1 + mx2 + mx12

}

generate data
set.seed(1)
n <- 1000
x <- runif(n)
z <- runif(n)
fx <- eta(x, z)
y <- fx + rnorm(n)

fit model via formula method
mod <- gammi(y ~ x + z)
mod

fit model via default method
modmat <- spline.model.matrix(y ~ 0 + x + z)
tlabels <- attr(modmat, "term.labels")
tassign <- attr(modmat, "assign")
g <- factor(tlabels[tassign], levels = tlabels)
mod0 <- gammi(modmat, y, g)
mod0

summarize fit model
summary(mod)

plot function estimate
plot(mod)

10 gammi

#~~~Example 3: Interaction Model ~~

mean function
eta <- function(x, z, additive = TRUE){

mx1 <- cos(2 * pi * (x - pi))
mx2 <- 30 * (z - 0.6)^5
mx12 <- 0
if(!additive) mx12 <- sin(pi * (x - z))
mx1 + mx2 + mx12

}

generate data
set.seed(1)
n <- 1000
x <- runif(n)
z <- runif(n)
fx <- eta(x, z, additive = FALSE)
y <- fx + rnorm(n)

fit model via formula method
mod <- gammi(y ~ x * z)
mod

fit model via default method
modmat <- spline.model.matrix(y ~ 0 + x * z)
tlabels <- attr(modmat, "term.labels")
tassign <- attr(modmat, "assign")
g <- factor(tlabels[tassign], levels = tlabels)
mod0 <- gammi(modmat, y, g)
mod0

summarize fit model
summary(mod)

plot function estimate
plot(mod)

#~~~Example 4: Random Intercept ~~~

mean function
eta <- function(x, z, additive = TRUE){

mx1 <- cos(2 * pi * (x - pi))
mx2 <- 30 * (z - 0.6)^5
mx12 <- 0
if(!additive) mx12 <- sin(pi * (x - z))
mx1 + mx2 + mx12

}

generate mean function
set.seed(1)

gammi 11

n <- 1000
nsub <- 50
x <- runif(n)
z <- runif(n)
fx <- eta(x, z)

generate random intercepts
subid <- factor(rep(paste0("sub", 1:nsub), n / nsub),

levels = paste0("sub", 1:nsub))
u <- rnorm(nsub, sd = sqrt(1/2))

generate responses
y <- fx + u[subid] + rnorm(n, sd = sqrt(1/2))

fit model via formula method
mod <- gammi(y ~ x + z, random = ~ (1 | subid))
mod

fit model via default method
modmat <- spline.model.matrix(y ~ 0 + x + z)
tlabels <- attr(modmat, "term.labels")
tassign <- attr(modmat, "assign")
g <- factor(tlabels[tassign], levels = tlabels)
mod0 <- gammi(modmat, y, g, random = ~ (1 | subid))
mod0

summarize fit model
summary(mod)

plot function estimate
plot(mod)

#############***############# BINOMIAL EXAMPLE #############***#############

#~~~Example 1: Single Predictor ~~~

generate data
n <- 1000
x <- seq(0, 1, length.out = n)
fx <- sin(2 * pi * x)
set.seed(1)
y <- rbinom(n = n, size = 1, prob = 1 / (1 + exp(-fx)))

fit model
mod <- gammi(y ~ x, family = binomial)
mod

summarize fit model
summary(mod)

12 gammi

plot function estimate
plot(mod)

#~~~Example 2: Additive Model ~~~

mean function
eta <- function(x, z, additive = TRUE){

mx1 <- cos(2 * pi * (x - pi))
mx2 <- 30 * (z - 0.6)^5
mx12 <- 0
if(!additive) mx12 <- sin(pi * (x - z))
mx1 + mx2 + mx12

}

generate data
set.seed(1)
n <- 1000
x <- runif(n)
z <- runif(n)
fx <- 1 + eta(x, z)
y <- rbinom(n = n, size = 1, prob = 1 / (1 + exp(-fx)))

fit model
mod <- gammi(y ~ x + z, family = binomial)
mod

summarize fit model
summary(mod)

plot function estimate
plot(mod)

#~~~Example 3: Interaction Model ~~

mean function
eta <- function(x, z, additive = TRUE){

mx1 <- cos(2 * pi * (x - pi))
mx2 <- 30 * (z - 0.6)^5
mx12 <- 0
if(!additive) mx12 <- sin(pi * (x - z))
mx1 + mx2 + mx12

}

generate data
set.seed(1)
n <- 1000
x <- runif(n)
z <- runif(n)
fx <- eta(x, z, additive = FALSE)

gammi 13

y <- rbinom(n = n, size = 1, prob = 1 / (1 + exp(-fx)))

fit model
mod <- gammi(y ~ x * z, family = binomial)
mod

summarize fit model
summary(mod)

plot function estimate
plot(mod)

#~~~Example 4: Random Intercept ~~~

mean function
eta <- function(x, z, additive = TRUE){

mx1 <- cos(2 * pi * (x - pi))
mx2 <- 30 * (z - 0.6)^5
mx12 <- 0
if(!additive) mx12 <- sin(pi * (x - z))
mx1 + mx2 + mx12

}

generate mean function
set.seed(1)
n <- 1000
nsub <- 50
x <- runif(n)
z <- runif(n)
fx <- 1 + eta(x, z)

generate random intercepts
subid <- factor(rep(paste0("sub", 1:nsub), n / nsub),

levels = paste0("sub", 1:nsub))
u <- rnorm(nsub, sd = sqrt(1/2))

generate responses
y <- rbinom(n = n, size = 1, prob = 1 / (1 + exp(-(fx+u[subid]))))

fit model
mod <- gammi(y ~ x + z, random = ~ (1 | subid), family = binomial)
mod

summarize fit model
summary(mod)

plot function estimate
plot(mod)

14 plot.gammi

plot.gammi Plot Method for gammi Fits

Description

Plots main and interaction effects from a fit gammi object.

Usage

S3 method for class 'gammi'
plot(x, terms = x$term.labels, conf.int = TRUE, n = 400,

intercept = FALSE, random = TRUE, ask = dev.interactive(),
xlab = NULL, ylab = NULL, zlab = NULL, main = NULL, ...)

Arguments

x Object of class "gammi"

terms Which model term(s) should be plotted? Default plots all terms.

conf.int Should a 95% confidence interval be added to the plot(s)?

n Number of points used to plot each of the (continuous) terms.

intercept Should the intercept be added to the y-axis of the plot(s)?

random Should Q-Q plots of the random coefficients be produced?

ask Should the user be asked before each plot is produced?

xlab Optional x-axis label for plot(s).

ylab Optional y-axis label for plot(s).

zlab Optional z-axis label for plot(s).

main Optional title for plot(s).

... Additional arguments passed to internal plotting functions.

Details

Default use plots each effect function along with a 95% confidence interval (if applicable). Line
plots are used for continuous predictors, bar plots are used for categorical predictors, Q-Q plots are
used for random effects, and image plots are used for two-way interactions. The visualizer1 and
visualizer2 functions are used to plot main and interaction effects, respectively.

Value

A plot is produced and nothing is returned.

Note

Three-way and higher-order interactions are not currently supported.

predict.gammi 15

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Helwig, N. E. (2024). Precise tensor product smoothing via spectral splines. Stats, 7(1), 34-53,
doi:10.3390/stats7010003

See Also

gammi for fitting generalized additive mixed models

predict.gammi for predicting from gammi objects

summary.gammi for summarizing results from gammi objects

Examples

load 'gammi' package
library(gammi)

load data
data(exam)

header of data
head(exam)

fit model
mod <- gammi(Exam.score ~ VRQ.score, data = exam,

random = ~ (1 | Primary.school) + (1 | Secondary.school))

plot terms
plot(mod)

refit model with Secondary.school as penalized nominal effect
mod <- gammi(Exam.score ~ Secondary.school + VRQ.score, data = exam,

random = ~ (1 | Primary.school))

plot terms
plot(mod)

predict.gammi Predict Method for gammi Fits

Description

Obtain predictions from a fit generalized additive mixed model (gammi) object.

https://doi.org/10.3390/stats7010003

16 predict.gammi

Usage

S3 method for class 'gammi'
predict(object,

newx,
newdata,
se.fit = FALSE,
type = c("link", "response", "terms"),
conf.int = FALSE,
conf.level = 0.95,
...)

Arguments

object Object of class "gammi"

newx Matrix of new x scores for prediction (default S3 method). Must have p columns
arranged in the same order as the x matrix used to fit the model.

newdata Data frame of new data scores for prediction (S3 "formula" method). Must
contain all variables in the formula (and fixed formula if applicable) used to
fit the model.

se.fit Logical indicating whether standard errors of predictions should be returned.

type Type of prediction to return: link = linear prediction, response = fitted value,
and terms = matrix where each columns contains each term’s linear predictor
contribution.

conf.int Logical indicating whether confidence intervals for predictions should be re-
turned.

conf.level Scalar between 0 and 1 controlling the confidence level for the interval. Ignored
if conf.int = FALSE.

... Additional arugments (ignored).

Details

The default of type = "link" returns the model implied linear predictor corresponding to newx or
newdata, i.e.,

g(µ̂θ(new)) = f̂θ(Xnew,Znew) +X⊤
newβ̂θ

where f̂θ(·) is the estimated smooth function (with the subscript of θ denoting the dependence on
the variance parameters), and β̂θ are the fixed effect estimates (if applicable). Note that Xnew and
Znew denote the new data at which the predictions will be formed.

Using type = "response" returns the predictions on the fitted value scale, i.e.,

µ̂θ(new) = g−1
(
f̂θ(Xnew,Znew) +X⊤

newβ̂θ

)
where g−1(·) denotes the inverse of the chosen link function.

Using type = "terms" returns a matrix where each column contains the linear predictor contribu-
tion for a different model term, i.e., the k-th column contains

f̂θk(Xnew,Znew) +X⊤
newkβ̂θk

predict.gammi 17

where f̂θk is the k-th additive function, i.e., f̂θ(Xnew,Znew) =
∑K

k=1 f̂θk(Xnew,Znew) and the
second term denotes the (optional) fixed-effect contribution for the k-th term, i.e., X⊤

newβ̂θ =∑K
k=1 X

⊤
newkβ̂θk

Value

If type = "link" or type = "response", returns either a vector (of predictions corresponding to
the new data) or a data frame that contains the predictions, along with their standard errors and/or
confidence interval endpoints (as controlled by se.fit and conf.int arguments).

If type = "terms", returns either a matrix (with columns containing predictions for each term) or
a list that contains the term-wise predictions, along with their standard errors and/or confidence
interval endpoints (as controlled by se.fit and conf.int arguments).

Note

Terms entered through the random argument of the gammi function are not included as a part of
predictions.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Helwig, N. E. (2024). Precise tensor product smoothing via spectral splines. Stats, 7(1), 34-53,
doi:10.3390/stats7010003

See Also

gammi for fitting generalized additive mixed models

plot.gammi for plotting effects from gammi objects

summary.gammi for summarizing results from gammi objects

Examples

load 'gammi' package
library(gammi)

mean function
eta <- function(x, z, additive = TRUE){

mx1 <- cos(2 * pi * (x - pi))
mx2 <- 30 * (z - 0.6)^5
mx12 <- 0
if(!additive) mx12 <- sin(pi * (x - z))
mx1 + mx2 + mx12

}

generate mean function
set.seed(1)
n <- 1000

https://doi.org/10.3390/stats7010003

18 spline.basis

nsub <- 50
x <- runif(n)
z <- runif(n)
fx <- eta(x, z)

generate random intercepts
subid <- factor(rep(paste0("sub", 1:nsub), n / nsub),

levels = paste0("sub", 1:nsub))
u <- rnorm(nsub, sd = sqrt(1/2))

generate responses
y <- fx + u[subid] + rnorm(n, sd = sqrt(1/2))

fit model via formula method
mod <- gammi(y ~ x + z, random = ~ (1 | subid))
mod

get fitted values via predict
fit <- predict(mod, newdata = data.frame(x = x, z = z))
max(abs(fit - mod$fitted.values))

get fitted values with SE and CI
fit <- predict(mod, newdata = data.frame(x = x, z = z), conf.int = TRUE)
head(fit)

get fitted values with SE and CI for each term
fit <- predict(mod, newdata = data.frame(x = x, z = z),

type = "terms", conf.int = TRUE)
str(fit) # list with 4 components
head(sapply(fit, function(x) x[,1])) # for x effect
head(sapply(fit, function(x) x[,2])) # for z effect

spline.basis Spectral Spline Basis

Description

Generate a spectral spline basis matrix for a nominal, ordinal, or polynomial smoothing spline.

Usage

spline.basis(x, df = NULL, knots = NULL, m = NULL, intercept = FALSE,
Boundary.knots = NULL, warn.outside = TRUE,
periodic = FALSE, xlev = levels(x))

Arguments

x the predictor vector of length n. Can be a factor, integer, or numeric, see Note.

df the degrees of freedom, i.e., number of knots to place at quantiles of x. Defaults
to 10 but ignored if knots are provided.

spline.basis 19

knots the breakpoints (knots) defining the spline. If knots are provided, the df is
defined as length(unique(c(knots, Boundary.knots))).

m the derivative penalty order: 0 = ordinal spline, 1 = linear spline, 2 = cubic
spline, 3 = quintic spline

intercept should an intercept be included in the basis?
Boundary.knots the boundary points for spline basis. Defaults to range(x).
warn.outside if TRUE, a warning is provided when x values are outside of the Boundary.knots
periodic should the spline basis functions be constrained to be periodic with respect to

the Boundary.knots?
xlev levels of x (only applicable if x is a factor)

Details

This is a reproduction of the rk function in the grpnet package (Helwig, 2024b).

Given a vector of function realizations f , suppose that f = Xβ, where X is the (unregularized)
spline basis and β is the coefficient vector. Let Q denote the postive semi-definite penalty matrix,
such that β⊤Qβ defines the roughness penalty for the spline. See Helwig (2017) for the form of X
and Q for the various types of splines.

Consider the spectral parameterization of the form f = Zα where

Z = XQ−1/2

is the regularized spline basis (that is returned by this function), and α = Q1/2β are the reparam-
eterized coefficients. Note that Xβ = Zα and β⊤Qβ = α⊤α, so the spectral parameterization
absorbs the penalty into the coefficients (see Helwig, 2021, 2024).

Syntax of this function is designed to mimic the syntax of the bs function.

Value

Returns a basis function matrix of dimension n by df (plus 1 if an intercept is included) with the
following attributes:

df degrees of freedom
knots knots for spline basis
m derivative penalty order
intercept was an intercept included?
Boundary.knots boundary points of x
periodic is the basis periodic?
xlev factor levels (if applicable)

Note

The (default) type of spline basis depends on the class of the input x object:

* If x is an unordered factor, then a nominal spline basis is used

* If x is an ordered factor (and m = NULL), then an ordinal spline basis is used

* If x is an integer or numeric (and m = NULL), then a cubic spline basis is used

Note that you can override the default behavior by specifying the m argument.

20 spline.basis

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Helwig, N. E. (2021). Spectrally sparse nonparametric regression via elastic net regularized smoothers.
Journal of Computational and Graphical Statistics, 30(1), 182-191. doi:10.1080/10618600.2020.1806855

Helwig, N. E. (2024a). Precise tensor product smoothing via spectral splines. Stats, 7(1), 34-53,
doi:10.3390/stats7010003

Helwig, N. E. (2024b). grpnet: Group Elastic Net Regularized GLMs and GAMs. R package
version 0.4. doi:10.32614/CRAN.package.grpnet

See Also

spline.model.matrix for building model matrices using tensor products of spline bases

Examples

######***###### LOAD GAMMI PACKAGE ######***######
library(gammi)

######***###### NOMINAL SPLINE BASIS ######***######

x <- as.factor(LETTERS[1:5])
basis <- spline.basis(x)
plot(1:5, basis[,1], t = "l", ylim = extendrange(basis))
for(j in 2:ncol(basis)){

lines(1:5, basis[,j], col = j)
}

######***###### ORDINAL SPLINE BASIS ######***######

x <- as.ordered(LETTERS[1:5])
basis <- spline.basis(x)
plot(1:5, basis[,1], t = "l", ylim = extendrange(basis))
for(j in 2:ncol(basis)){

lines(1:5, basis[,j], col = j)
}

######***###### LINEAR SPLINE BASIS ######***######

x <- seq(0, 1, length.out = 101)
basis <- spline.basis(x, df = 5, m = 1)
plot(x, basis[,1], t = "l", ylim = extendrange(basis))
for(j in 2:ncol(basis)){

lines(x, basis[,j], col = j)
}

https://doi.org/10.1080/10618600.2020.1806855
https://doi.org/10.3390/stats7010003
https://doi.org/10.32614/CRAN.package.grpnet

spline.model.matrix 21

######***###### CUBIC SPLINE BASIS ######***######

x <- seq(0, 1, length.out = 101)
basis <- spline.basis(x, df = 5)
basis <- scale(basis) # for visualization only!
plot(x, basis[,1], t = "l", ylim = extendrange(basis))
for(j in 2:ncol(basis)){

lines(x, basis[,j], col = j)
}

######***###### QUINTIC SPLINE BASIS ######***######

x <- seq(0, 1, length.out = 101)
basis <- spline.basis(x, df = 5, m = 3)
basis <- scale(basis) # for visualization only!
plot(x, basis[,1], t = "l", ylim = extendrange(basis))
for(j in 2:ncol(basis)){

lines(x, basis[,j], col = j)
}

spline.model.matrix Construct Design Matrices via Spectral Splines

Description

Creates a design (or model) matrix using the spline.basis function to expand variables via a
spectral spline basis.

Usage

spline.model.matrix(object, data, ...)

rowKronecker(X, Y)

Arguments

object a formula or terms object describing the fit model

data a data frame containing the variables referenced in object

... additional arguments passed to the spline.basis function, e.g., df, knots, m,
etc. Arguments must be passed as a named list, see Examples.

X matrix of dimension n× p

Y matrix of dimension n× q

22 spline.model.matrix

Details

This is a reproduction of the rk.model.matrix function in the grpnet package (Helwig, 2024b).

Designed to be a more flexible alternative to the model.matrix function. The spline.basis func-
tion is used to construct a marginal basis for each variable that appears in the input object. Tensor
product interactions are formed by taking a rowwise Kronecker product of marginal basis matrices.
Interactions of any order are supported using standard formulaic conventions, see Note.

Value

The design matrix corresponding to the input formula and data, which has the following attributes:

assign an integer vector with an entry for each column in the matrix giving the term in
the formula which gave rise to the column

term.labels a character vector containing the labels for each of the terms in the model

knots a named list giving the knots used for each variable in the formula

m a named list giving the penalty order used for each variable in the formula

periodic a named list giving the periodicity used for each variable in the formula

xlev a named list giving the factor levels used for each variable in the formula

Note

For formulas of the form y ~ x + z, the constructed model matrix has the form cbind(spline.basis(x),
spline.basis(z)), which simply concatenates the two marginal basis matrices. For formulas of
the form y ~ x : z, the constructed model matrix has the form rowKronecker(spline.basis(x),
spline.basis(z)), where rowKronecker denotes the row-wise kronecker product. The formula y
~ x * z is a shorthand for y ~ x + z + x : z, which concatenates the two previous results. Unless it is
suppressed (using 0+), the first column of the basis will be a column of ones named (Intercept).

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Helwig, N. E. (2021). Spectrally sparse nonparametric regression via elastic net regularized smoothers.
Journal of Computational and Graphical Statistics, 30(1), 182-191. doi:10.1080/10618600.2020.1806855

Helwig, N. E. (2024a). Precise tensor product smoothing via spectral splines. Stats, 7(1), 34-53,
doi:10.3390/stats7010003

Helwig, N. E. (2024b). grpnet: Group Elastic Net Regularized GLMs and GAMs. R package
version 0.4. doi:10.32614/CRAN.package.grpnet

See Also

See spline.basis for details on the spectral spline basis

https://doi.org/10.1080/10618600.2020.1806855
https://doi.org/10.3390/stats7010003
https://doi.org/10.32614/CRAN.package.grpnet

StartupMessage 23

Examples

load 'gammi' package
library(gammi)

load data
data(exam)

header of data
head(exam)

make basis matrix
x <- spline.model.matrix(Exam.score ~ ., data = exam)

check dimension (= 3435 by 178)
dim(x)

check term labels
attr(x, "term.labels")

check which columns of x belong to which terms
attr(x, "assign") # note: 0 = (Intercept)

StartupMessage Startup Message for gammi

Description

Prints the startup message when gammi is loaded. Not intended to be called by the user.

Details

The ‘gammi’ ascii start-up message was created using the taag software.

References

https://patorjk.com/software/taag/

summary.gammi Summary Method for gammi Fits

Description

Obtain summary statistics from a fit generalized additive mixed model (gammi) object.

Usage

S3 method for class 'gammi'
summary(object, ...)

24 summary.gammi

Arguments

object Object of class "gammi"

... Additional arguments (currently ignored)

Details

Produces significance testing and model diagnostic information. The significance tests use the
Bayesian interpretation of a smoothing spline. The variable importance indices sum to 100 but can
be negative for some terms. The variance inflation factors should ideally be 1 for all terms; values
greater than 5 or 10 can indicate noteworthy multicollinearity.

Value

An object of class "summary.gammi", which is a list with components:

call the model call, i.e., object$call

term.labels the model term labels (character vector)

family the exponential family object

logLik log-likelihood for the solution

aic AIC for the solution

deviance the model deviance (numeric)

deviance.resid the deviance residuals

r.squared the model R-squared (numeric); see Note

df the total degrees of freedom = object$edf + object$df.random

significance the signififance testing information (matrix)

importance the variable importance information (numeric)

vif the variance inflation factors (numeric)

Note

The model R-squared is the proportion of the null deviance that is explained by the model, i.e.,

r.squared = 1 - deviance / null.deviance

where deviance is the deviance of the model, and null.deviance is the deviance of the null model.

When the random argument is used, null.deviance and r.squared will be NA. This is because
there is not an obvious null model when random effects are included, e.g., should the null model in-
clude or exclude the random effects? Assuming that is it possible to define a reasonable null.deviance
in such cases, the above formula can be applied to calculate the model R-squared for models that
contain random effects.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

visualizers 25

References

Helwig, N. E. (2024). Precise tensor product smoothing via spectral splines. Stats, 7(1), 34-53,
doi:10.3390/stats7010003

See Also

gammi for fitting generalized additive mixed models

plot.gammi for plotting effects from gammi objects

predict.gammi for predicting from gammi objects

Examples

load 'gammi' package
library(gammi)

load data
data(exam)

header of data
head(exam)

fit model
mod <- gammi(Exam.score ~ VRQ.score, data = exam,

random = ~ (1 | Primary.school) + (1 | Secondary.school))

summarize results
summary(mod)

refit model with Secondary.school as penalized nominal effect
mod <- gammi(Exam.score ~ Secondary.school + VRQ.score, data = exam,

random = ~ (1 | Primary.school))

summarize results
summary(mod)

visualizers Internal Functions for Plot Method

Description

Internal functions used by the plot.gammi function to visualize main effects and two-way interac-
tion effects in fit gammi objects.

Usage

visualizer1(x, y, bars = FALSE, bw = 0.02, lty = 1, lwd = 2, col = "black",
lwr = NULL, upr = NULL, ci.lty = 2, ci.lwd = 1.25, ci.col = "black",
zero = TRUE, zero.lty = 3, xlim = NULL, ylim = NULL,

https://doi.org/10.3390/stats7010003

26 visualizers

xlab = NULL, ylab = NULL, main = NULL, add = FALSE, ...)

visualizer2(x, y, z, col = NULL, ncolor = 21,
xlim = NULL, ylim = NULL, zlim = NULL, zline = 1.5,
xlab = NULL, ylab = NULL, zlab = NULL, main = NULL,
xticks = NULL, xlabels = NULL, yticks = NULL, ylabels = NULL, ...)

Arguments

x, y, z For 1D plots: x and y are the primary inputs to the plot function. For 2D plots:
these are the primary inputs to the image function.

bars For 1D plots: logical indicating whether to create a line plot (default) or a bar
plot (bars = TRUE).

bw For 1D plots: width of the bars relative to range of x (ignored if bars = FALSE).
lty, lwd For 1D plots: line type and width for 1D plots.
col For 1D plots: single color for line/bar plot. For 2D plots: vector of colors for

image plot.
ncolor For 2D plots: number of colors used for image plot and color legend, see Note.
lwr, upr For 1D plots: number vectors defining the lower and upper bounds to plot for a

confidence interval. Must be the same length as x and y.
ci.lty, ci.lwd, ci.col

For 1D plots: the type, width, and color for the confidence interval lines drawn
from the lwr and upr arguments.

zero, zero.lty For 1D plots: zero is a logicical indicating whether a horizontal line at y = 0
should be included, and zero.lty controls the line type

xlim, ylim, zlim For 1D plots: xlim and ylim are the axis limits input to the plot function.
For 2D plots: these are the axis limits input to the image function (note: zlim
controls range for color legend).

xlab, ylab, zlab For 1D plots: xlab and ylab are the axis labels input to the plot function.
For 2D plots: these are the axis labels input to the image function (note: zlab
controls label for color legend).

main Title of the plot.
add Should lines/bars be added to current plot?
zline For 2D plots: margin line for the z-axis label.
xticks, yticks For 2D plots: tick marks for x-axis and y-axis grid lines.
xlabels, ylabels

For 2D plots: labels corresponding to the input tick marks that define the grid
lines.

... Additional arguments passed to the plot and image functions.

Details

The visualizer1 function is used to plot 1D (line/bar) plots, and the visaulizer2 function is
used to plot 2D (image) plots. These functions are not intended to be called by the user, but they
may be useful for producing customized visualizations that are beyond the scope of the plot.gammi
function.

visualizers 27

Value

A plot is produced and nothing is returned.

Note

The vector of colors used to construct the plots is defined as colorRampPalette(col)(ncolor),
which interpolates a color palette of length ncolor from the input colors in the vector col.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Helwig, N. E. (2024). Precise tensor product smoothing via spectral splines. Stats, 7(1), 34-53,
doi:10.3390/stats7010003

See Also

plot.gammi for plotting effects from gammi objects

Examples

load 'gammi' package
library(gammi)

load 'exam' help file
?exam

load data
data(exam)

header of data
head(exam)

fit model
mod <- gammi(Exam.score ~ VRQ.score, data = exam,

random = ~ (1 | Primary.school) + (1 | Secondary.school))

plot results (using S3 method)
plot(mod, include.random = FALSE)

plot results (using visualizer)
xnew <- seq(min(exam$VRQ.score), max(exam$VRQ.score), length.out = 400)
pred <- predict(mod, newdata = data.frame(VRQ.score = xnew),

type = "terms", conf.int = TRUE)
visualizer1(x = xnew, y = pred$fit, lwr = pred$lwr, upr = pred$upr,

xlab = "VRQ.score", ylab = "Exam.score", main = "VRQ.score effect")

https://doi.org/10.3390/stats7010003

Index

∗ datasets
exam, 2

∗ hplot
plot.gammi, 14
visualizers, 25

∗ htest
summary.gammi, 23

∗ regression
gammi, 3
plot.gammi, 14
predict.gammi, 15
spline.basis, 18
spline.model.matrix, 21
summary.gammi, 23

∗ smooth
gammi, 3
plot.gammi, 14
predict.gammi, 15
spline.basis, 18
spline.model.matrix, 21
summary.gammi, 23

bs, 19

class, 19

exam, 2

factor, 19
family, 4, 24
formula, 21

gammi, 3, 15, 17, 25
gammiStartupMessage (StartupMessage), 23
glm, 4
glmerControl, 5

image, 26

lm, 4
lmer, 6, 7

lmerControl, 5

model.matrix, 22

plot, 26
plot.gammi, 8, 14, 17, 25–27
predict.gammi, 8, 15, 15, 25

rk, 19
rk.model.matrix, 22
rowKronecker, 22
rowKronecker (spline.model.matrix), 21

spline.basis, 18, 21, 22
spline.model.matrix, 5, 20, 21
StartupMessage, 23
summary.gammi, 8, 15, 17, 23

terms, 21

visualizer1 (visualizers), 25
visualizer2 (visualizers), 25
visualizers, 25

28

	exam
	gammi
	plot.gammi
	predict.gammi
	spline.basis
	spline.model.matrix
	StartupMessage
	summary.gammi
	visualizers
	Index

