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bml Bayesian Multiple-Membership Multilevel Models with Parameteriz-
able Weight Functions Using JAGS
Description
The bml package provides a user-friendly interface for fitting Bayesian multiple-membership mul-
tilevel models with parameterizable weight functions via JAGS.
JAGS must be installed separately: https://sourceforge.net/projects/mcmc-jags/.
Usage
bm1 (
formula,
family = "Gaussian”,
priors = NULL,

inits = NULL,

n.iter = 1000,
n.burnin = 500,
n.thin = max(1, floor((n.iter - n.burnin)/1000)),
n.chains = 3,

seed = NULL,

run = TRUE,

parallel = FALSE,
monitor = TRUE,
modelfile = FALSE,
cox_intervals = NULL,
data = NULL


https://sourceforge.net/projects/mcmc-jags/
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Arguments

formula

family

priors

inits

n.iter

n.burnin

n.thin

n.chains

seed

run

parallel

A symbolic model formula. See *’Formula Components’ section for details. The
general structure is: outcome ~ 1 + predictors + mm(...) +hm(...). For sur-
vival models, use Surv(time, event) on the left-hand side.
Character string specifying the outcome distribution and link function. Options:
* "Gaussian”: Normal distribution with identity link (continuous outcomes)
e "Binomial”: Binomial distribution with logit link (binary outcomes)
e "Weibull”: Weibull survival model (requires Surv(time, event) outcome)
* "Cox": Cox proportional hazards model (requires Surv(time, event) out-
come)
Named list or character vector of JAGS prior specifications. Parameter names
follow JAGS naming conventions:
* Main level: b[x] for main-equation coefficients (e.g., "b[1] ~ dnorm(@,
0.01)" for the intercept)
* HM level: b.hm.k[x] for hm block k coefficients, tau.hm.k for hm block
k random effect precision
* MM level: b.mm.k[x] for mm block k coefficients, b.w.k[x] for weight
function parameters in mm block k, tau.mm. g for mm random effect preci-
sion (indexed by member-group ID group g)
¢ Other: shape (Weibull shape parameter), lambda@[k] (Cox baseline haz-
ard intervals)
Note: Priors on variance components must be specified on the precision scale
(tau =1/sigma*2), not the standard deviation, since JAGS parameterizes nor-
mal distributions using precision. Example: 1ist("b.mm.1 ~ dnorm(@, 0.01)",
"tau.mm.1 ~dgamma(2, @.1)"). Default priors are weakly informative.
List of initial values for MCMC chains. Applied to all chains. If NULL, JAGS
generates initial values automatically. Weight function parameters (b.w.k) are
always initialized at O by default to prevent numerical instability (e.g., ilogit
with extreme inputs). User-supplied inits override these defaults.
Total number of MCMC iterations per chain. Default: 1000. Increase for better
convergence (e.g., 10000-50000 for production models).
Number of burn-in iterations to discard at the start of each chain. Default: 500.
Should be sufficient for chains to reach stationarity.
Thinning rate: save every k-th iteration to reduce autocorrelation. Default:
max(1, floor((n.iter - n.burnin) / 1000)) (targets ~1000 samples). In-
crease if posterior samples show high autocorrelation.
Number of MCMC chains. Default: 3. Use 3-4 chains to assess convergence via
Gelman-Rubin diagnostics.

Integer random seed for reproducibility. If NULL, results will vary across runs.

Logical; if TRUE (default), JAGS is executed and the model is fitted. If FALSE,
returns the model specification without fitting (useful for inspecting generated
JAGS code or data structures).

Logical; if TRUE, run MCMC chains in parallel using multiple cores. Requires
parallel backend setup. Default: FALSE.
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monitor Logical; if TRUE, store full MCMC chains and additional outputs for diagnostic
plots. Required for monetPlot and mcmcDiag. Default: TRUE.

modelfile Logical or character path:

* FALSE (default): JAGS code generated internally

* TRUE: Save generated JAGS code to modelstring.txt in working direc-
tory

* Character path: Read JAGS code from specified file instead of generating

cox_intervals For Cox models only: controls baseline hazard flexibility and computational
efficiency.

* NULL (default): Non-parametric baseline hazard using all unique event times
(maximum flexibility, slower for large datasets)

* Integer k: Piecewise constant baseline hazard with k intervals (faster, suit-
able for datasets with many unique event times). Recommended: k = 10-20
for most applications.

data Data frame in member-level (long) format where each row represents a member-
level observation. Must contain all variables referenced in the formula, includ-
ing identifiers specified in id().

Details

In addition to hierarchical and cross-classified multilevel models, the bml package allows users to
fit Bayesian multiple-membership models. Unlike tools such as brms or MLwiN, bml lets users
specify and estimate models in which membership weights are parameterized through flexible for-
mula syntax. This enables a more nuanced examination of how effects from member-level units
aggregate to group level (the micro-macro link).

The package automatically generates JAGS code to fit the model and processes the output to facili-
tate interpretation of model parameters and diagnostics.

The package and modeling framework are introduced in: Rosche, B. (2026). A Multilevel Model for
Coalition Governments: Uncovering Party-Level Dependencies Within and Between Governments.
Political Analysis.

For accessible introductions to multiple-membership models, see Fielding and Goldstein (2006)
and Beretvas (2010). Advanced treatments include Goldstein (2011, Ch. 13), Rasbash and Browne
(2001, 2008), Browne et al. (2001), and Leckie (2013).

Value
A list of class "bml" containing:
* reg.table: Data frame of posterior summaries with columns Parameter, mean, sd, 1b, ub
(95% credible interval bounds).

* w: List of weight matrices (one per mm() block). Each matrix has rows = groups and columns
= members within each group.

* re.mm: List of member-level random effects (one per mmid group with RE = TRUE). Vector for
standard RE, matrix for autoregressive RE.

* re.hm: List of nesting-level random effects (one per hm() block with type = "RE").


https://www.bristol.ac.uk/cmm/software/mlwin/
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* pred: Vector of predicted values (posterior means) for each group.

 input: List of model specifications including family, mm and hm block info, sample sizes, and
MCMC settings.

* jags.out: Full R2jags output object (if monitor = TRUE; NULL otherwise). Contains posterior
samples, MCMC chains, and convergence diagnostics.

Formula Components

* Outcome (Y): The dependent variable. For survival models, use Surv(time, event).
* Intercept: Follows standard R formula conventions (like 1m()):

— y ~ x: Includes intercept by default
- y ~ 1+ x: Explicitly includes intercept (same as default)
- y~0+xory~-1+x: Excludes intercept

* Main-level predictors (X.main): Variables defined at the main (group) level, separated by +.
* HM-level predictors (X.hm): Variables defined at the nesting level, separated by +.

* Multiple membership object (nm()): Defines how member-level units are associated with
group-level constructs using a user-specified weighting function. Multiple mm() objects can
be specified with different weight functions.

* Hierarchical membership (hm()): Specifies nesting of main-level units within higher-level
entities. Cross-classified structures can be modeled by including multiple hm() objects.

Formula Features: The main formula and vars() specifications support standard R formula syn-
tax:
* Interactions: Use * for main effects plus interaction, or : for interaction only. Example: y ~
a*bexpandstoy ~a+b+a:b.

* Transformations: Use I() for arithmetic operations. Example: y ~ I(x*2) ory ~ I(a +b).
These features work in:

e Main formula: y ~1+axb+I(x"2)

« mm() vars: vars(a * b) or vars(I(x*2))

¢ hm() vars: vars(a:b) or vars(I(log(x)))
Note on weight functions: The fn() weight function in mm() does NOT support interactions or
I() transformations. Users must pre-create any needed transformed variables in their data before

using them in weight functions. For example, instead of fn(w ~ b1 * x*2), first create data$x_sq
<- data$x”2 and use fn(w ~ b1 * x_sq).

Note on intercepts: Intercept syntax (1, @, -1) only applies to the main formula. Numeric literals
in vars() are ignored (e.g., vars(1 + x) is equivalent to vars(x)).

Multiple Membership Object mm()

mm (
id = id(mmid, mainid),
vars = vars(X.mm),
fn = fn(w ~ 1/n, c = TRUE),
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RE = TRUE,
ar = FALSE

)

Components:

e id(mmid, mainid): Specifies identifiers linking each member-level unit (mmid) to its corre-
sponding group-level entities (mainid).

e vars(X.mm): Specifies member-level covariates aggregated across memberships. Use + to
include multiple variables. Supports interactions (*, :) and transformations (I()). Set to NULL
for RE-only blocks.

e fn(w~ ..., c): Defines the weight function (micro-macro link). The ¢ parameter controls
weight normalization: when ¢ = TRUE (default), weights are normalized to sum to 1 within
each group (W = wix/ Y, wix). Set ¢ = FALSE for unnormalized weights (e.g., when aggre-
gating sums). Note: Does not support interactions or I() - pre-create transformed variables.

* RE: Logical; if TRUE, include random effects for this block. Automatically TRUE if vars =
NULL.

* ar: Logical; if TRUE, member-level random effects evolve as a random walk across repeated
participations in groups. This captures dynamics where a member’s unobserved heterogeneity
changes over time. Default: FALSE.

Multiple mm() blocks: You can specify multiple mm() blocks with different weight functions.
However, RE = TRUE can only be specified for one mm() block.

mm(id = id(pid, gid), vars = vars(X.mm.1), fn = fn(w ~ 1/n), RE = FALSE) +
mm(id = id(pid, gid), vars = vars(X.mm.2), fn = fn(w ~ pseat == max(pseat)), RE = FALSE) +
mm(id = id(pid, gid), vars = NULL, fn = fn(w ~ 1/n), RE = TRUE)

Hierarchical Membership Object hm()

hm(id = id(hmid), vars = vars(X.hm), name = hmname, type = "RE"”, showFE = FALSE)

Components:

e id=id(hmid): Variable identifying nesting-level groups.

e vars = vars(X.hm): Nesting-level variables, or NULL. Supports interactions (x, :) and trans-
formations (I()).

* name = hmname: Optional labels for nesting-level units.
e type: "RE" (default) or "FE".
» showFE: If TRUE and type = "FE", report the fixed effects.

Supported Families / Links

¢ Gaussian (continuous): family = "Gaussian”
* Binomial (logistic): family = "Binomial”
¢ Weibull survival: family = "Weibull”, outcome: Surv(time, event)

¢ Cox survival: family = "Cox", outcome: Surv(time, event)
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Priors

Priors can be specified for parameters. With multiple mm() blocks, use indexed names:

priors = list(
"b.mm.1 ~ dnorm(@, 0.01)",
"b.w.1 ~ dnorm(@, 0.1)",
"tau.mm.1 ~ dscaled.gamma(25, 1)"

)

Author(s)

Benjamin Rosche <benrosche @nyu.edu>

References

Rosche, B. (2026). A Multilevel Model for Coalition Governments: Uncovering Party-Level De-
pendencies Within and Between Governments. Political Analysis.

Browne, W. J., Goldstein, H., & Rasbash, J. (2001). Multiple membership multiple classification
(MMMC) models. Statistical Modelling, 1(2), 103-124.

See Also

summary .bml for model summaries, monetPlot for posterior visualization, mcmcDiag for conver-
gence diagnostics, mm, hm for model specification helpers

Examples

data(coalgov)

# Basic multiple-membership model
# Parties (pid) within governments (gid), nested in countries (cid)
ml <- bml(
Surv(dur_wkb, event_wkb) ~ 1 + majority +
mm(
id = id(pid, gid),
vars = vars(cohesion),

fn = fn(w ~ 1/n, ¢ = TRUE),
RE = TRUE
) +

hm(id = id(cid), type = "RE"),
family = "Weibull”,
data = coalgov

)

# View results
summary (m1)
monetPlot(m1, "b[2]") # Plot for majority coefficient

# Multiple mm() blocks with different weight functions
m2 <- bml(
Surv(dur_wkb, event_wkb) ~ 1 + majority +
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mm(id = id(pid, gid), vars = vars(cohesion),

fn = fn(w ~ cohesion == max(cohesion)), RE = FALSE) +
mm(id = id(pid, gid), vars = NULL, fn = fn(w ~ 1/n), RE = TRUE),
family = "Weibull”,
data = coalgov
)

# Cox model with piecewise baseline hazard (faster for large datasets)
m3 <- bml(
Surv(dur_wkb, event_wkb) ~ 1 + majority +
mm(id = id(pid, gid), vars = vars(cohesion), fn = fn(w ~ 1/n), RE = TRUE),
family = "Cox",
cox_intervals = 10, # Use 10 intervals instead of all unique times
data = coalgov

)

# Parameterized weight function
# ilogit() bounds raw weights between @ and 1; ¢ = TRUE normalizes to sum to 1

m4 <- bml(
Surv(dur_wkb, event_wkb) ~ 1 + majority +
mm(
id = id(pid, gid),
vars = vars(cohesion),
fn = fn(w ~ ilogit(b@ + b1 * pseat), c = TRUE),
RE = FALSE
),
family = "Weibull",
data = coalgov
)
# Fixed coefficients (offsets)
m5 <- bml(
Surv(dur_wkb, event_wkb) ~ 1 + fix(majority, 1) + # Fix majority coefficient to 1.0
mm(
id = id(pid, gid),

vars = vars(rile),

fn = fn(w ~ 1/n, ¢ = TRUE),
RE = FALSE
),
family = "Weibull”,
data = coalgov

)

# Custom priors
m6 <- bml(
Surv(dur_wkb, event_wkb) ~ 1 + majority +
mm(id = id(pid, gid), vars = vars(cohesion), fn = fn(w ~ 1/n), RE = TRUE),
family = "Weibull”,
priors = list(

"b[1] ~ dnorm(@, 0.01)", # Intercept prior
"b.mm.1 ~ dnorm(@, 0.1)", # MM coefficient prior
"tau.mm.1 ~ dgamma(2, 0.5)" # MM precision prior

)Y
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data = coalgov

)

# Cross-classified model (multiple hm blocks)
# Governments are cross-classified by country and election year
m7 <- bml(

Surv(dur_wkb, event_wkb) ~ 1 + majority +

mm(id = id(pid, gid), vars = vars(cohesion), fn = fn(w ~ 1/n), RE = TRUE) +
hm(id = id(cid), type = "RE") +
hm(id = id(year), type = "RE"),

family = "Weibull”,

data = coalgov |> mutate(year = format(election, "%Y") |> as.integer())

)
coalgov Coalition Governments in Western Democracies (1944-2014)
Description

A dataset containing information on coalition governments and their member parties across 30
parliamentary democracies. The data are in long format where the unit of analysis is parties in
governments, making it suitable for multiple-membership multilevel models where governments
(groups) are composed of multiple parties (members).

Usage

coalgov

Format

A tibble with 2,077 rows and 18 variables. Each row represents a party’s participation in a specific
coalition government. The sample contains 628 governments formed by 312 unique parties across
29 countries.

Identifiers:

gid Government identifier (group-level unit in mm() specification). Range: [3, 1105]
pid Party identifier (member-level unit in mm() specification). Range: [11110, 96955]
cid Country identifier (nesting-level unit in hm() specification). Range: [11, 96]
cname Three-letter country code (ISO 3166-1 alpha-3)

pname Full party name
Government-level variables:

election Date of the preceding election that led to the government’s formation. Range: [1939-04-
02,2014-12-14]

n Number of parties in the coalition (group size for weight functions). Range: [2, 9], mean: 3.31
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dur_wkb Government duration in days, measured from investiture to termination (outcome vari-
able for survival models). Range: [7, 1840], mean: 554.5

event_wkb Early termination indicator: 1 = government terminated due to political conflict (vol-
untary resignation, dissension within government, lack of parliamentary support, or head of
state intervention) more than one year before the official end of term; O = censored (regular
elections, other reasons, or termination within one year of scheduled elections). Range: [0, 1],
mean: 0.39

majority Majority government indicator: 1 = coalition controls majority of parliamentary seats, O
= minority government. Range: [0, 1], mean: 0.80

mwc Minimal winning coalition indicator: 1 = coalition would lose its majority if any party left, O
= oversized coalition. Range: [0, 1], mean: 0.35

rile_SD Inter-party ideological heterogeneity. Standard deviation of coalition parties’ left-right
positions (from CMP) relative to the ideological distribution of all parties in parliament. Stan-
dardized and inverted so higher values indicate greater ideological cohesion. Range: [-8.40,
2.12], mean: 0.04

Country-level variables:

investiture Investiture vote requirement (time-constant country characteristic): 1 = country re-
quires formal parliamentary investiture vote, 0 = no formal requirement. Range: [0, 1], mean:
0.46

Party-level variables:

pseat Party’s relative seat share within the coalition, computed as pseat / sum(pseat) within each
government. Sums to 1 within each coalition. Range: [0.00, 1.00], mean: 0.33

prime Prime minister party indicator: TRUE = party holds prime ministership (n = 628), FALSE =
junior coalition partner (n = 1,449)

cohesion Intra-party ideological cohesion, measured using an adaptation of the Cowles-Jones ra-
tio. Computed as the ratio of continuous ideological shifts to reversals in a party’s left-right
position over time. Higher values indicate more consistent ideological trajectories (greater
cohesion). Standardized. Range: [-1.13, 3.85], mean: 0.00

rile Party’s left-right ideological position (from CMP). Measured on a continuous scale where
higher values indicate more right-wing positions and lower values indicate more left-wing
positions. Standardized. Range: [-3.21, 3.68], mean: 0.00

finance Party’s economic dependence on member contributions (from PPDB). Measured as the
share of party funding from member dues relative to total income. Standardized; higher val-
ues indicate greater dependence on member financing. Treated as time-constant due to data
limitations. Range: [-0.98, 4.40], mean: 0.00

Nmembers Number of party members (from PPDB). Standardized; treated as time-constant due to
data limitations. Range: [-0.33, 15.02], mean: 0.00

Details

This dataset demonstrates multiple-membership multilevel modeling where:

* Members: Political parties (identified by pid)

* Groups: Coalition governments (identified by gid)
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* Nesting: Governments nested within countries (identified by cid)

Each coalition government comprises multiple parties, and parties can participate in multiple gov-
ernments over time. This creates a multiple-membership structure where party-level characteristics
are aggregated to the government level using weighting functions specified in mm() blocks.

Sample: After matching party data across sources and excluding single-party and caretaker gov-
ernments, the sample comprises 628 governments formed by 312 unique parties across 29 coun-
tries: Australia, Austria, Belgium, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Finland,
France, Germany, Greece, Hungary, Ireland, Israel, Italy, Japan, Latvia, Lithuania, Netherlands,
Norway, Poland, Portugal, Romania, Slovakia, Spain, Sweden, Switzerland, and United Kingdom.

Measurement notes:
¢ Government duration follows the WKB convention: time from investiture to termination or
new elections

 Early termination events focus on political gridlock (conflict-related endings) and exclude
terminations within one year of scheduled elections

* Party-level variables (cohesion, finance, Nmembers) are standardized (mean = 0) for analysis

Source
Data compiled from multiple sources:
* Coalition governments: Woldendorp, Keman, and Budge (WKB) dataset, updated by Seki
and Williams (2014)
 Party ideology: Comparative Manifesto Project (CMP; Volkens et al. 2016)
 Party organization: Political Party Database (PPDB; Scarrow, Poguntke, and Webb 2017)

Missing party-level data imputed using multiple imputation by chained equations with predictive
mean matching.

References

Seki, K., & Williams, L. K. (2014). Updating the Party Government data set. Electoral Studies, 34,
270-279.

Volkens, A., etal. (2016). The Manifesto Data Collection. Manifesto Project MRG/CMP/MARPOR).
Version 2016a. Berlin: Wissenschaftszentrum Berlin fur Sozialforschung.

Scarrow, S. E., Webb, P. D., & Poguntke, T. (Eds.). (2017). Organizing Political Parties: Repre-
sentation, Participation, and Power. Oxford University Press.

See Also

bml for modeling examples using this dataset
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Examples

data(coalgov)

# Explore data structure
str(coalgov)
table(coalgov$cname)

# Number of unique units
length(unique(coalgov$gid))  # Governments
length(unique(coalgov$pid)) # Parties
length(unique(coalgov$cid)) # Countries

# Model: government duration as function of majority status and party characteristics
m1 <- bml(
Surv(dur_wkb, event_wkb) ~ 1 + majority +
mm(id = id(pid, gid), vars = vars(finance), fn = fn(w ~ 1/n), RE = TRUE) +
hm(id = id(cid), type = "RE"),
family = "Weibull”,
data = coalgov

)

summary(m1)

fix Fix a coefficient to a known value

Description

Specify a covariate whose coefficient should be held constant at a fixed value rather than estimated
from the data. This is useful for offset variables or when you want to impose theoretical constraints.
Fixed coefficients are handled efficiently by pre-computing their contribution in R before passing
data to JAGS.

Usage

fix(var, value)

Arguments

var Unquoted variable name from your data

value Numeric value for the coefficient (e.g., 1.0 for a standard offset)
Value

A bml_fix object that can be used within vars.
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See Also

vars, mm, hm

Examples

# Fix a coefficient to 1.0 (standard offset)
fix(exposure, 1.0)

# Use within vars() for multiple-membership models
vars(fix(population, ©.5) + income + education)

fn Specify a weight function for multiple-membership models

Description

Defines how member-level contributions are weighted when aggregating to the group level (the
"micro-macro link"). The weight function can be a simple formula (e.g., 1/n for equal weights) or
can include parameters to be estimated from the data.

Usage

fn(w = w ~ 1/n, ¢ = TRUE)

Arguments

w A two-sided formula specifying the weight function. The left-hand side must be
w; the right-hand side defines the weighting scheme:

* Simple: w ~ 1/n (equal weights based on group size)
* Parameterized: w ~ b@ + b1 * tenure (weights depend on member charac-
teristics and estimated parameters)

* With group aggregates: w ~ b1 * min(x) + (1-b1) * mean(x) (weights based
on group-level summaries; see Details)

Parameters must be named b@, b1, b2, etc.

c Logical; if TRUE (default), weights are normalized to sum to 1 within each group.
Set to FALSE for unnormalized weights.
Details
Weight Function Components:

* Variables (e.g., n, tenure): Data from your dataset
* Parameters (e.g., b9, b1): Estimated from the data

¢ Operations: Standard R arithmetic (+, -, *, /, *, etc.)
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Common Weight Functions:

* Equal weights: w~ 1/n
* Duration-based: w ~ duration
* Flexible parameterized: w ~ b@ + b1 * seniority

* Group aggregates: w ~ b1 xmin(x) + (1-b1) * mean(x)

When ¢ = TRUE, the weights are constrained: Zk‘EgToup wg = 1.
Group-Level Aggregation Functions:
The weight function supports aggregation functions that compute summaries within each group
(mainid). These are pre-computed in R before passing to JAGS. Supported functions:
* min(var), max(var): Minimum/maximum value within the group
* mean(var), sum(var): Mean/sum of values within the group
* median(var), mode(var): Median/mode (most frequent) value within the group
e sd(var), var(var), range(var): Standard deviation/variance/range (max-min) within the
group
e first(var), last(var): First/last value (based on data order)
e quantile(var, prob): Quantile at probability prob (0 to 1). For example, quantile(x,
0.25) computes the 25th percentile.

Example: fn(w ~ b1 * min(tenure) + (1-b1) * max(tenure)) creates weights that blend the min-
imum and maximum tenure within each group, with the blend controlled by the estimated parameter
b1.

Example with quantile: fn(w ~ quantile(tenure, 0.75) / max(tenure)) uses the 75th percentile
relative to the maximum within each group.

Note: Nested aggregation functions (e.g., min(max(x))) are not supported.
JAGS Mathematical Functions:
The following mathematical functions are passed directly to JAGS and can be used in weight for-
mulas:
* exp, log, 1log10, sqrt, abs, pow
e sin, cos, tan, asin, acos, atan
e sinh, cosh, tanh
* logit, ilogit, probit, iprobit, cloglog, icloglog
e round, trunc, floor, ceiling
Example: fn(w~1/ (1+(n-1) xexp(-(b1 *x)))) uses an exponential decay function where
weights depend on member characteristics.
Ensuring Numerical Stability:

Weight functions with estimated parameters (b9, b1, ...) must produce bounded, positive values
across all plausible parameter values. Unbounded weight functions can cause the MCMC sampler
to crash (e.g., "Error innodew.1[...]: Invalid parent values”). During sampling, weight
parameters can take on extreme values, and if the weight function is not bounded, this will destabi-
lize the likelihood.

Recommendations:



fn

15

Use bounded weight functions. Two options:

— ilogit(): Bounds weights between 0 and 1 with a zero-point at 0.5: fn(w ~ ilogit(b@
+ b1 *xx), c=TRUE)

— Generalized logistic (Rosche, 2026): Bounds weights between 0 and 1 with a zero-point
at 1/n (equal weights), so deviations from equal weighting are estimated as a function of
covariates: fn(w~1/ (1+(n-1) *exp(-(b@+bl*x))), c=TRUE)

Use ¢ = TRUE (weight normalization) to prevent weights from growing without bound

Standardize covariates in the weight function. Variables with large ranges (e.g., income in
thousands) can cause b * x to overflow

Use informative priors for weight parameters via the priors argument in bml (e.g., priors
=list("b.w.1[1] ~dnorm(@, 1)"))

Avoid unbounded functions like exp(b * x) without normalization (c = TRUE) or wrapping
(e.g., inside ilogit())

Weight parameters are initialized at O by default to ensure numerically stable starting values. See
vignette(”faq") (Question 7) for detailed troubleshooting of numerical issues.

Value

A bml_fn object containing the parsed weight function specification.

References

Rosche, B. (2026). A Multilevel Model for Theorizing and Estimating the Micro-Macro Link.
Political Analysis.

Browne, W. J., Goldstein, H., & Rasbash, J. (2001). Multiple membership multiple classification
(MMMC) models. Statistical Modelling, 1(2), 103-124.

See Also

mm, bml, vignette("model™) for the model structure, vignette(”faq") for troubleshooting

Examples

# Equal weights (standard multiple-membership)

fnw

~ 1/n, ¢ = TRUE)

# Tenure-based weights (proportional to time served)

fnw

~ tenure, ¢ = TRUE)

# Flexible parameterized weights

fnw

~ b@ + bl * seniority, c = TRUE)

# Unconstrained weights

fnw

~ importance, c¢ = FALSE)

# Weights based on group aggregates

fnw

~ b1l * min(tenure) + (1 - b1) * mean(tenure), c = TRUE)
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# Combining individual and aggregate measures
fn(w ~ b@ + bl * (tenure / max(tenure)), c = TRUE)

# Using median for robust central tendency
fn(w ~ tenure / median(tenure), c = TRUE)

# Using quantiles for percentile-based weights
fn(w ~ quantile(tenure, @.75) - quantile(tenure, 0.25), c = TRUE)

hm

Define a hierarchical nesting structure

Description

Specifies a hierarchical (nesting) level in the model where group-level units are nested within
higher-level entities. Unlike multiple-membership structures, each group belongs to exactly one
nesting-level unit. Can model either random effects or fixed effects at the nesting level.

Usage

hm(id, vars

Arguments

id

vars

name

type

showFE

ar

Details

NULL, name = NULL, type = "RE", showFE = FALSE, ar = FALSE)

An id object specifying the nesting-level identifier: id(hmid) where hmid iden-
tifies the higher-level units (e.g., countries, regions).

A vars object specifying nesting-level covariates, or NULL for intercept-only
effects. Supports interactions (*, :) and transformations (I()).

Unquoted variable name for nesting-level labels (optional). If provided, these
labels will be displayed in model output for fixed effects.

Character; either "RE"” for random effects (default) or "FE" for fixed effects at
the nesting level.

Logical; if TRUE and type = "FE", fixed effect estimates for each nesting-level
unit are included in output. Default: FALSE.

Logical; if TRUE, random effects evolve autoregressively across participations
at the nesting level. Requires sequential participation indicators in the data.
Default: FALSE.

Hierarchical vs. Multiple-Membership:

Hierarchical structures (hm) model strict nesting: each group belongs to exactly one higher-level
unit. Use mm when groups can have memberships in multiple units.

Random vs. Fixed Effects:
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* Random effects (type = "RE"): Nesting-level units are treated as a random sample from a
population. Best when you have many units and want to generalize.

* Fixed effects (type = "FE"): Each unit gets its own parameter. Best when you have few units
or want to estimate unit-specific effects.
Cross-Classification:

Multiple hm() blocks create cross-classified models where groups are simultaneously nested within
multiple non-nested hierarchies (e.g., schools within both neighborhoods and districts).

Value

A bml_hm object containing the hierarchical specification.

References

Goldstein, H. (2011). Multilevel Statistical Models (4th ed.). Wiley.

Rabe-Hesketh, S., & Skrondal, A. (2012). Multilevel and Longitudinal Modeling Using Stata (3rd
ed.). Stata Press.

See Also

bml, mm, id, vars

Examples

# Random effects with covariates
hm(
id = id(cid),
vars = vars(gdp + democracy),
name = cname,

type = "RE"
)
# Random intercepts only
hm(
id = id(cid),
vars = NULL,
type = "RE"
)
# Fixed effects
hm(
id = id(cid),
vars = NULL,
name = cname,
type = "FE",

showFE = TRUE # Show estimates for each country

)

# Autoregressive random effects
hm(
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id = id(cid),
vars = NULL,

type = "RE",

ar = TRUE # Effects evolve over time

)
id Specify identifier variables for multiple-membership and hierarchical
structures
Description

Helper function used within mm and hm to specify the identifier variables that define memberships
and nesting structures. In multiple-membership models, id() links member-level units (e.g., party
IDs) to group-level units (e.g., government IDs). In hierarchical models, id() specifies the nesting-
level identifier (e.g., country ID).

Usage
id(...)
Arguments
Unquoted variable names from your data:
e Formm(): Two identifiers id(mmid, mainid) where mmid identifies member-
level units and mainid identifies group-level units

e For hm(): One identifier id(hmid) where hmid identifies nesting-level units

Value

A bml_id object containing the variable names as character strings.

See Also

mm, hm, bml

Examples
# Multiple-membership: parties (pid) within governments (gid)
id(pid, gid)

# Hierarchical: governments within countries
id(cid)
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mcmcDiag Summarize MCMC convergence diagnostics

Description

Computes common convergence diagnostics for selected parameters from a JAGS/BUGS fit and
returns a compact, report-ready table. The diagnostics include Gelman—Rubin R, Geweke z-scores,
Heidelberger-Welch stationarity p-values, and autocorrelation at a user-specified lag.

Usage

mcmcDiag(bml.out, parameters, lag = 50)

Arguments
bml.out A model fit object containing JAGS output, typically as returned by R2jags: : jags(),
with component $jags.out$BUGSoutput.
parameters Character vector of parameter names (or patterns) to extract. These may be exact
names or patterns (e.g., a prefix like "b" that matches "b[1]1", "b[2]1",...).
lag Integer specifying the lag at which to compute autocorrelation. Default: 50.
Lower values (e.g., 10) capture short-range dependence; higher values assess
whether the chain has mixed well over longer intervals.
Details

Internally, the function converts the BUGS/JAGS output to a coda: :mcmc. list, then computes
per-chain diagnostics and averages them across chains for each parameter:

¢ Gelman—Rubin (AR): coda: :gelman.diag(). Values close to 1 indicate convergence; a com-
mon heuristic is R < 1.1.

* Geweke z-score: coda: :geweke.diag(). Large absolute values (e.g.,
of convergence.

z| > 2) suggest lack

* Heidelberger—Welch p-value: coda::heidel.diag() tests the null of stationarity in the
chain segment.

* Autocorrelation: coda::autocorr() at the specified lag, averaged across chains. Values
near zero indicate good mixing; persistent autocorrelation suggests the chain needs thinning
or reparameterization.

All statistics are rounded to three decimals. The returned table is transposed so that rows are
diagnostics and columns are parameters.
Value

A data. frame with one row per diagnostic and one column per parameter; cell entries are the aver-
age diagnostic values across chains. Row names include: "Gelman/Rubin convergence statistic”,
"Geweke z-score”, "Heidelberger/Welch p-value”, "Autocorrelation (lag <lag>)".
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Author(s)

Benjamin Rosche <benrosche@nyu.edu>

References

Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences.
Statistical Science, 7(4), 457-472.

Brooks, S. P, & Gelman, A. (1998). General methods for monitoring convergence of iterative
simulations. Journal of Computational and Graphical Statistics, 7(4), 434-455.

See Also

gelman.diag, geweke.diag, heidel.diag, autocorr

Examples

data(coalgov)

# Fit model
ml <= bml(
Surv(dur_wkb, event_wkb) ~ 1 + majority +
mm(id = id(pid, gid), vars = vars(cohesion), fn = fn(w ~ 1/n), RE = TRUE),
family = "Weibull”,
monitor = TRUE,
data = coalgov

)

# Check convergence for main parameters
mcmcDiag(m1, parameters = "b") # All b coefficients

# Check specific parameters
mcmcDiag(m1, parameters = c("b[1]", "b[2]", "shape"))

# Check mm block parameters
mcmcDiag(m1, parameters = c("b.mm.1"”, "sigma.mm.1"))

# Custom autocorrelation lag
mcmcDiag(m1, parameters = "b", lag = 100)

# Interpreting results:

# - Gelman-Rubin < 1.1: Good convergence

# - |Geweke z| < 2: No evidence against convergence
# - Heidelberger p > 0.05: Chain appears stationary
# - Low autocorrelation: Good mixing
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Description

Specifies a multiple-membership level in the model where group-level units (e.g., governments)
are composed of multiple member-level units (e.g., political parties). Unlike pure hierarchical
nesting, members can belong to multiple groups, and their contributions are aggregated using a
user-specified weight function.

Usage
mm(id, vars = NULL, fn = NULL, RE = NULL, ar = FALSE)

Arguments
id An id object specifying the member-level and group-level identifiers: id(mmid,
mainid) where mmid identifies members and mainid identifies groups.
vars A vars object specifying member-level covariates to aggregate, or NULL for ran-
dom effects only. Supports interactions (*, :) and transformations (I()). Vari-
ables are weighted according to the function specified in fn.
fn A fn object specifying the weight function (default: fn(w ~ 1/n, ¢ = TRUE) for
equal weights). Note: Weight functions do NOT support interactions or I() -
pre-create any needed transformed variables in your data. See fn for details.
RE Logical; if TRUE, include random effects for member-level units. Automatically
set to TRUE if vars = NULL (random effects only).
ar Logical; if TRUE, random effects evolve autoregressively across participations.
Requires members to have sequential participation indicators in the data. De-
fault: FALSE.
Details

Multiple-Membership Models:

In standard hierarchical models, each observation belongs to exactly one group. Multiple-membership
models relax this assumption, allowing groups to be composed of multiple members, with flexible
weighting of member contributions.

Model Structure:

The contribution from mm block & to group j is:
mmy; = Z Wi (T Br + ki)
i€Egroup;
where:

* wg;: Weight for member ¢ in group j (from fn)



22

* x1;: Member-level covariates (from vars)
* Bi: Regression coefficients (estimated)
* ag;: Member-level random effect (if RE = TRUE)

Multiple mm() Blocks:

You can specify multiple mm() blocks with different weight functions, variables, or random effect
specifications. This allows modeling different aggregation mechanisms simultaneously.

Value

A bml_mm object containing the multiple-membership specification.

References

Rosche, B. (2026). A Multilevel Model for Theorizing and Estimating the Micro-Macro Link.
Political Analysis.

Browne, W. J., Goldstein, H., & Rasbash, J. (2001). Multiple membership multiple classification
(MMMC) models. Statistical Modelling, 1(2), 103-124.

Fielding, A., & Goldstein, H. (2006). Cross-classified and multiple membership structures in multi-

level models: An introduction and review. Research Report RR791, Department for Education and
Skills.

See Also

bml, id, vars, fn, hm

Examples

# Equal weights with variables
mm(
id = id(pid, gid),
vars = vars(rile + ipd),
fn = fn(w ~ 1/n, ¢ = TRUE),
RE = FALSE
)

# Random effects only (no variables)
mm(

id = id(pid, gid),

vars = NULL,

fn = fn(w ~ 1/n, ¢ = TRUE),

RE = TRUE # Automatically TRUE when vars = NULL
)

# Flexible weights with parameter
mm(
id = id(pid, gid),
vars = vars(org_structure),
fn = fn(w ~ ilogit(b® + b1 * pseat), c = TRUE),
RE = TRUE
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)
# Autoregressive random effects
mm(
id = id(pid, gid),
vars = NULL,
fn = fn(w ~ 1/n, ¢ = TRUE),
RE = TRUE,
ar = TRUE # Random effects evolve over participations
)

# Interactions and transformations in vars

mm(
id = id(pid, gid),
vars = vars(rile * ipd), # Main effects plus interaction
fn = fn(w ~ 1/n, ¢ = TRUE),

RE = FALSE
)
mm(
id = id(pid, gid),

vars = vars(rile + I(rile*2)), # Quadratic term
fn = fn(w ~ 1/n, ¢ = TRUE),
RE = FALSE

monetPlot Visualize posterior distributions with density and trace plots

Description

Creates a combined diagnostic plot showing both the posterior density and MCMC trace plot for a
specified parameter. Helps assess convergence and visualize posterior uncertainty. The plot displays
the median and 90% highest posterior density (HPD) interval.

Usage

monetPlot(bml, parameter, label = NULL, r = 2, yaxis = TRUE)

Arguments
bml A fitted model object of class "bml” returned by bml. Must be fitted with
monitor = TRUE to store MCMC chains.
parameter Character string specifying the parameter to plot. Must use the internal parame-

ter name (i.e., row names from bml$reg. table). Examples: "b[1]" (intercept),
"b[2]" (first covariate), "b.mm.1" (first mm block coefficient), "sigma.mm"
(mm random effect SD).
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label Optional character string for the parameter label displayed on the plot. If NULL
(default), uses the internal parameter name.

r Number of decimal places for displayed quantiles and statistics. Default: 2.

yaxis Logical; if TRUE (default), display axis titles ("Density" and "Scans"). If FALSE,

omit axis titles for cleaner appearance when combining multiple plots.

Details

Interpreting the Plot:

* Density panel: Shows the posterior distribution. The dashed line marks the median (central
estimate). Shading indicates the 90% credible region.

» Trace panel: Shows parameter values across MCMC iterations for each chain. Good mixing
looks like "fuzzy caterpillars" with chains overlapping. Poor mixing shows trends, stickiness,
or separation between chains.

Convergence Checks:

* Chains should overlap and explore the same space
* No sustained trends or drift

* Rapid mixing (no long autocorrelation)

Use memeDiag for formal convergence statistics (Gelman-Rubin, Geweke, etc.).

Value
A ggplot object (using patchwork) combining two panels:

e Top panel: Posterior density with shaded 90% HPD interval. Solid vertical line at zero,
dashed line at posterior median.

* Bottom panel: Trace plot showing MCMC iterations across chains. Same reference lines as
top panel. Helps diagnose convergence and mixing.

Author(s)

Benjamin Rosche <benrosche @nyu.edu>

See Also

bml, mcmcDiag, summary.bml

Examples

data(coalgov)

# Fit model with monitoring enabled
ml <- bml(
Surv(dur_wkb, event_wkb) ~ 1 + majority +
mm(id = id(pid, gid), vars = vars(cohesion), fn = fn(w ~ 1/n), RE = TRUE) +
hm(id = id(cid), type = "RE"),
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family = "Weibull”,
monitor = TRUE, # Required for monetPlot
data = coalgov

)

# Plot intercept
monetPlot(m1, parameter = "b[1]", label = "Intercept”)

# Plot majority coefficient with custom label
monetPlot(m1, parameter = "b[2]", label = "Majority Government Effect")

# Plot mm coefficient
monetPlot(m1, parameter = "b.mm.1", label = "Party Fragmentation")

# Plot random effect SD
monetPlot(m1, parameter = "sigma.mm.1")

# List available parameters
rownames (ml1$reg. table)

summary . bml Summarize a fitted bml model

Description

S3 method for summarizing bml model objects. Returns a formatted table of parameter estimates
with posterior means, standard deviations, and credible intervals, along with model information and
convergence statistics.

Usage
## S3 method for class 'bml'
summary(object, r = 3, ...)
Arguments
object A fitted model object of class "bml"” returned by bml.
r Number of decimal places for rounding numeric output. Default: 3.

Additional arguments (currently unused).

Details

The summary method rounds all numeric values for readability while preserving the underlying
structure and metadata from the fitted model. All columns remain accessible via standard data
frame indexing (e.g., $Parameter, $mean).

For Cox models with piecewise baseline hazards (when cox_intervals is specified), the outcome
description includes the number of intervals used.
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Value

A data frame of class "bml_summary” containing rounded parameter estimates with the following
columns:

* Parameter: Labeled parameter names

* mean: Posterior mean

* sd: Posterior standard deviation

* 1b: Lower bound of 95% credible interval

* ub: Upper bound of 95% credible interval

The object includes metadata attributes printed above the table:

* QOutcome family and link function

* Estimate type (posterior mean from MCMC)

* Credible interval specification (95% equal-tailed)
* Level specification (mm and hm block details)

* DIC (Deviance Information Criterion) for model comparison

Author(s)

Benjamin Rosche <benrosche @nyu.edu>

See Also

bml, monetPlot, mcmcDiag

Examples

data(coalgov)

# Fit model
ml <= bml(
Surv(dur_wkb, event_wkb) ~ 1 + majority +
mm(id = id(pid, gid), vars = vars(cohesion), fn = fn(w ~ 1/n), RE = TRUE) +
hm(id = id(cid), type = "RE"),
family = "Weibull”,
data = coalgov

)

# View summary
summary(m1)

# Summary with more decimal places
summary(ml, r = 4)

# Access specific columns

s <- summary(m1)

s$Parameter # Parameter names
s$mean # Posterior means
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s$lb # Lower credible bounds
# Custom posterior summaries (requires monitor = TRUE)
# Extract posterior draws as a tidy data frame

draws <- coda::as.mcmc.list(m1$jags.out$BUGSoutput) |> as.matrix() |> as_tibble()

# Select specific parameters and compute custom summaries

draws |>
dplyr::select(dplyr::starts_with("b[")) [>
tidyr::pivot_longer(everything(), names_to = "param”) [>

dplyr::group_by(param) |>
dplyr::summarise(
median = median(value),
mad = mad(value),

qo5 = quantile(value, 0.05),
q95 = quantile(value, 0.95)
)
varDecomp Variance decomposition for fitted bml models
Description

Computes a posterior variance decomposition and intraclass correlation coefficients (ICCs) from a
fitted bml model. The function automatically discovers all variance components (sigma parameters)
in the model, applies weight adjustments for multiple-membership levels, and returns posterior

summaries.
Usage
varDecomp(model, uncertainty = "sd", r = 2)
Arguments
model A fitted model object of class "bml"” returned by bml. Must have been fitted with
monitor = TRUE (the default).
uncertainty Uncertainty measure to report. One of "sd” (posterior standard deviation, the
default), "mad” (median absolute deviation), or "ci” (95% credible interval with
lower/upper bounds).
r Number of decimal places for rounding numeric output. Default: 2.
Details

Variance decomposition. The total variance of the outcome is partitioned into additive compo-
nents, one for each level in the model:
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varDecomp

Var(y) = 0% 4+ 03 + ...

Each component contributes variance o2, except for multiple-membership (MM) levels, where the

effective variance contribution is scaled by the average of the summed squared weights across
groups.

1
2 2
Varmm = 05 - w2, 2= N E Wi
i—1 k

This weight adjustment accounts for the fact that the member-level variance is distributed across
multiple members with potentially unequal influence. With equal weights (w;;, = 1/n;), the effec-
tive variance shrinks as group size increases.

Intraclass Correlation Coefficient (ICC). The ICC for a given level is the proportion of total
variance attributable to that level:

o2

!
Pl=<= 3
> or

Intuitively, the ICC answers: "What fraction of the total variation in the outcome is due to differ-
ences between units at this level?" An ICC of 0.30 for the country level, for example, means that
30% of the outcome variation can be attributed to between-country differences.

ICCs are computed per posterior draw and then summarized, properly propagating uncertainty from
the MCMC samples.

Family-specific handling:

* Gaussian / Weibull: The residual sigma from the model is used directly.

+ Binomial: There is no residual sigma. The latent logistic residual variance 72/3 ~ 3.29 is
used instead.

* Cox: There is no residual variance. ICCs are computed among the non-residual components
only.

Value

A data frame of class "bml_varDecomp” with one row per variance component. Always includes
Component, sigma, and ICC columns. Additional columns depend on uncertainty:

e "sd": sigma_sd and ICC_sd

* "mad”: sigma_mad and ICC_mad

e "ci": sigma_lb, sigma_ub, ICC_1b, ICC_ub

Author(s)

Benjamin Rosche <benrosche @nyu.edu>

See Also

bml, summary.bml
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Examples

data(coalgov)

m1 <- bml(
Surv(dur_wkb, event_wkb) ~ 1 + majority +
mm(id = id(pid, gid), vars = vars(cohesion), fn = fn(w ~ 1/n), RE = TRUE) +
hm(id = id(cid), type = "RE"),
family = "Weibull”,
data = coalgov

)

varDecomp(m1)

varDecomp(m1, uncertainty = "ci")
varDecomp(m1, uncertainty = "mad")
vars Specify covariates for multiple-membership or hierarchical models

Description

Helper function used within mm and hm to specify which variables should be included at each level
of the model. Supports both free variables (with coefficients to be estimated) and fixed variables
(with coefficients held constant using fix).

Usage
vars(...)
Arguments
Unquoted variable names from your data, combined using + (formula-style).
Supports:
» Simple variables: vars(x +y)
* Interactions: vars(x x y) or vars(x:y)
¢ Transformations: vars(I(x*2)) or vars(I(x +y))
¢ Fixed coefficients: vars(fix(x, 1.0) +y)
Note: Numeric literals like 1, @, or -1 are ignored (no intercept support in
mm/hm blocks).
Value

A bml_vars object containing:

e formula: Formula object for use with model.matrix()
¢ free: Character vector of base variable names
» fixed: List of variables with fixed coefficients (if any)

Returns NULL if no variables are specified.
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See Also

fix, mm, hm

Examples

# Simple variable specification (formula-style with +)
vars(income + education)

# Single variable
vars(income)

# Interactions
vars(income * education) # expands to income + education + income:education
vars(income:education) # interaction only

# Transformations
vars(I(income”2)) # squared term
vars(income + I(income*2)) # linear and squared

# Mix free and fixed variables
vars(fix(exposure, 1.0) + income + education)

# Use in mm() specification
mm (
id = id(pid, gid),
vars = vars(rile + ipd),
fn = fn(w ~ 1/n),
RE = FALSE
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