Package 'MRAM'

July 21, 2025

Type Package

Title Multivariate Regression Association Measure

Version 0.1.2

Description The multivariate regression association measure quantifies the predictability of one random vector from another. This package provides a function for estimating and performing inference on this measure. A variable selection algorithm based on this measure is also included. For more details, see Shih and Chen (2025) <in revision>.

Depends RANN

License GPL-2

Encoding UTF-8

RoxygenNote 7.3.2

NeedsCompilation no

Author Jia-Han Shih [aut, cre], Yi-Hau Chen [aut]

Maintainer Jia-Han Shih < jhshih@math.nsysu.edu.tw>

Repository CRAN

Date/Publication 2025-06-06 13:20:13 UTC

Contents

	nram 2	
	s_mram 3	
5	5	

Index

mram

Description

Estimate the multivariate regression association measure proposed in Shih and Chen (2025). Standard error estimates are obtained by applying the *m*-out-of-*n* bootstrap proposed in Dette and Kroll (2024).

Usage

```
mram(
 y_data,
 x_data,
  z_data = NULL,
 bootstrap = FALSE,
 B = 1000,
  g_vec = seq(0.4, 0.9, by = 0.05)
```

Arguments

)

y_data	A $n \times d$ matrix of responses.
x_data	A $n \times p$ Matrix of predictors.
z_data	A $n \times q$ matrix of conditional predictors.
bootstrap	Perform the m -out-of- n bootstrap if TRUE. The default value is FALSE.
В	Number of bootstrap replications. The default value is 1000.
g_vec	A vector used to generate a collection of rules for the <i>m</i> -out-of- <i>n</i> bootstrap. The default value is $seq(0.4, 0.9, by = 0.05)$.

Details

The value T_est returned by mram is between -1 and 1. However, it is between 0 and 1 asymptotically. A small value indicates that x_data has low predictability for y_data condition on z_data in the sense of the considered measure. Similarly, a large value indicates that x_data has high predictability for y_data condition on z_data. If z_data = NULL, the returned value indicates the unconditional predictability.

Value

T_est	The estimate of the multivariate regression association measure.
T_se_cluster	The standard error estimate based on the cluster rule.
m_vec	The vector of m generated by g_vec.
T_se_vec	The vector of standard error estimates obtained from the $m\text{-}out\text{-}of\text{-}n$ bootstrap, where m is equal to <code>m_vec</code> .
J_cluster	The index of the best m_vec chosen by the cluster rule.

vs_mram

References

Dette and Kroll (2024) A Simple Bootstrap for Chatterjee's Rank Correlation, Biometrika, asae045.

Shih and Chen (2025) Measuring multivariate regression association via spatial sign (in revision, Computational Statistics & Data Analysis)

See Also

vs_mram

Examples

```
n = 100
lambda_para = 3
sigma_para = 0.4
x_data = matrix(rnorm(n*2),n,2)
y_data = matrix(0,n,2)
y_data[,1] = x_data[,1]+x_data[,2]+lambda_para*sigma_para*rnorm(n)
y_data[,2] = x_data[,1]-x_data[,2]+lambda_para*sigma_para*rnorm(n)
```

library(MRAM)
res = mram(y_data,x_data,bootstrap = FALSE)

vs_mram	Variable Selection via the Multivariate Regression Association Mea-
	sure

Description

Perform variable selection via the multivariate regression association measure proposed in Shih and Chen (2025).

Usage

vs_mram(y_data, x_data)

Arguments

y_data	A $n \times d$ matrix of responses.
x_data	A $n \times p$ matrix of predictors.

Details

vs_mram is a forward and stepwise variable selection algorithm which utilizes the multivariate regression association measure proposed in Shih and Chen (2025). The Algorithm is modified from the feature ordering by conditional independence (FOCI) algorithm from Azadkia and Chatterjee (2021).

Value

The vector containing the indices of the selected predictors in the order they were chosen.

References

Azadkia and Chatterjee (2021) A simple measure of conditional dependence, Annals of Statistics, 46(6): 3070-3102.

Shih and Chen (2025) Measuring multivariate regression association via spatial sign (in revision, Computational Statistics & Data Analysis)

See Also

mram

Examples

```
n = 200
p = 10
x_data = matrix(rnorm(p*n),n,p)
y_data = x_data[,1]*x_data[,2]+x_data[,1]-x_data[,3]+rnorm(n)
colnames(x_data) = paste0(rep("X",p),seq(1,p))
```

```
library(MRAM)
mram_res = vs_mram(y_data,x_data)
```

Index

mram, 2, 4

vs_mram, *3*, 3