The follow up
LuaMetaTgX

BachoTgX May 2019

Hans & Alan



1

» This talk is not about how we can use LuaTgX to control
domotica applications. We already discussed that.

e This talk is not about how we can use ConTgXt in ad-
vanced rendering, for instance as part of web-based
workflows. That’s old news.

e This talk is not about how much fun it would be to
have a Microsoft HoloLens and see what ConTgXt and
LuaTgX could do with it. We just can’t afford it.

* This talk is not about more complexity, but it is about
keeping things simple. It’s about turning a burden into
a pleasure.

e To quote the Riverside! frontman: I hope you all leave
here a bit younger than you felt when you came here.
This talk is about turning lead into gold.

A Polish progrock band I recently saw live in the Netherlands. A band
related to Lunatic Soul.

From lead to gold



We have the weight and experience of about 40 years
of TEX and its usage on our shoulders.

Good old TgX got extended: &-TEX, Omega (Aleph),
pdfIEX, XqIEX, [e]l[ullp]TEX and LuaTgX (& LuajitTEX)
showed up.

The dvi output got complemented by pdf.

Bitmap fonts were replaced by Typel that itself got re-
placed by the container formats OpenType and True-
Type. Variable fonts were introduced.

Math got upgraded to OpenType math, thanks to Mi-
crosoft.

Unicode got accepted and utf is nowadays the pre-
ferred input encoding.

The community supported the development of many
fonts that found their place in distributions.

Alongside plain TgX the macro packages I“TgX and Con-
TEXt both evolved into large collections of resources.

Where do we stand



There is no doubt that TgX is a success. We can find nice
examples but also some horrible looking documents.

A large distribution is no guarantee for quality and
continuous success, nor is the number of incidental
(forced) users.

A ConTgXt user doesn’t need that much: just the
LuaTgX binary will do, plus a bunch of MKIV macros,
completed by a reasonable set of fonts.

Currently all that is embedded in a large ecosystem, al-
though we always use only a small, reasonable subset.

Getting the whole machinery up and running from
scratch (source code) is not trivial.

The source code base is rather large and compilation
is complex: it builds on decades of being nice for all
platforms and fulfilling all demands.

What we consider gold could also be seen as lead in
disguise. Some alchemy might be needed to go back to
where we came from.

Are we good?



At some point you need to stabilize and for LuaTgX, ver-
sion 1.10 is that moment.

But some ideas and experiments have been delayed be-
cause the engine was already in use, also outside of
ConTgXt.

Compatibility is a big issue in the TgX community
(which is good) so we’re in a sort of a deadlock (which
is bad).

And we wanted to take a next step in ConTgXt devel-
opment. It’s not strictly necessary to make drastic
changes, but we need to adapt.

The question is how we can guarantee users a long-
term stability of the both macro package as well as the
engine it runs on.

The Status Quo



For ConTgXt we want just one binary. We don’t really
need LuajitTEX for Lua]IT is not following Lua anyway.

We don’t want (for windows) a special stub binary. Af-
ter all we already have the context job manager and
mtxrun script manager. All platforms should be treated
alike.

Performance should be stable and not influenced by
code added to the binary. In fact, performance should
constantly improve!

The engine should not depend on libraries that are
floating, get updated frequently, and can come from
places out of our control (versions).

The memory footprint should be acceptable for running
in containers (or small virtual machines). Energy con-
sumption matters too.

The binary should be kept small because it also serves
as the Lua interpreter.

What Is Needed



Around the ConTgXt meeting I took LuaTgX 1.09.0 ex-
perimental as starting point and began stripping.

Before that, I already had written some test code to see
what could be replaced.

Stepwise redundant components were removed. This
took time because each (small) step was tested on real
documents, the test suite, etc.

. maybe some examples & /install-lmtx/* ...

I played with some ideas that were put on hold, some
were accepted and some were rejected and more and
more got in the mood.

Also Lua]IT was dropped, but its removal was compen-
sated by large performance boosts in other areas.

The build was simplified (it took some time to find what
was irrelevant) and compilation now is about half a
minute, or less!

How It Went



We have an experimental new installer for ConTEXt Imtx
(the new name). It uses http: and just the engine for
fetching data. Updating goes fast.

The Imtx distribution is MkIV only and much smaller
than the full installation.

Eventually (soon) the source code of the used engine
will be in the distribution so that we have a self con-
tained package. Users on new or unique systems can
compile.

The development of the engine is under control of the
ConTgXt developers: that way there is no danger that
things break. We like to have a playground.

Extensions can make it into LuaTgX once found useful
and stable as long as they don’t break LuaTgX upward
compatibility (unlikely on the short term).

Where are we



There is no backend code. We generate the pdf output
in Lua (this was already the case for much of it.)

There is no bitmap image inclusion code present. All is
done in Lua.

There is no font loading code present. This already hap-
pened mostly in Lua anyway.

Some libraries have been removed and some have been
simplified. A few experimental helper libraries were
added (like math). The dependencies are minimal.

The code is undergoing some restructuring but it might
take some years before I've reached the (informal)
goals.

Alan and I are exploring new possibilities that this
setup gives (especially in combining TgX, MetaPost and
Lua. Stay tuned.

Some highlights



As of April 1, 2019, users can test the experimental dis-
tribution. A few were already in the loop.

It looks like there are no big issues, and speed gains
can be impressive.

As a consequence we can start dropping in replace-
ment code in regular MKIV some day soon too.

Around the next ConTgXt meeting the source code will
become part of the regular distribution (given that I'm
satisfied with it).

Before that we hope to have the compile farm up and
running for LuaMetaTgX.

From that moment on, the ConTgXt users will have a
self contained, archival, independent, lean and mean
installation available, which will become the default.

Because LuaMetaTgX is a subset of LuaTgX, there are
no plans right now for supporting plain TgX. We’ll see.
(I might come up with generic backend code some day.)

The agenda



