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Preface 
 
This material is intended as an introductory guide to data analysis with the R system, to 
assist in statistical computing training for life science researchers. It was produced as 
companion material for a seminar (R Tutorial for Life Sciences) given at The University 
of Tennessee in the spring of 2009, sponsored by The National Institute for 
Mathematical and Biological Synthesis (NIMBioS), for graduate students in different 
biological areas. This material was produced to serve as a basic introduction to R for 
researchers and students visiting NIMBioS. Many more advanced guides are available 
both through the R web site and various books. 
 
The principal aim is to provide a step-by-step guide on the use of R to carry out 
statistical analysis and techniques widely used in the life sciences. In each section, we 
give a detailed explanation of a command in R, followed by a biological example with 
all the instructions (in red) needed to run the test and with the corresponding output in R 
(in blue). In several sections we left some questions or additional analysis as an 
exercise. Also at the end of some sections we give a list of other commands in R related 
to the topics explained in the corresponding section. We assume some previous 
knowledge in statistics and experimental design, essentially corresponding to a basic 
undergraduate introductory statistics course.   
 
These notes were written to take advantage of R version 2.8.1 or later, under a Windows 
operating system. This is version 1.1 of these notes, generated in May 2009 and edited 
for style and content by NIMBioS Director Louis Gross in December 2009. This 
document is available for download from the NIMBioS.org site and is provided free-of-
charge with no warrantee for its use. It is not to be modified from this form without 
explicit authorization from the author.  
 
Marco Martinez  
Graduate Student - Mathematical Ecology 
Department of Mathematics 
The University of Tennessee - Knoxville 
mmarti52@utk.edu 
December 2009 
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1. An introduction to R 
 
 
1.1 What is R? 
R is a statistical computer program made available through the Internet under the 
General Public License (GPL). That is, it is supplied with a license that allows you to 
use it freely, distribute it, or even sell it, as long as the receiver has the same rights and 
the source code is freely available. It is available for Microsoft Windows XP or later, 
for a variety of Unix and Linux platforms, and for Apple Macintosh OS X (Dalgaard, 
2002).  
 
R is an integrated suite of software facilities for data manipulation, calculation and 
graphical display (Venables et al. 2009).  There is a difference in philosophy between R 
and some other statistical software, since in R a statistical analysis is normally done as a 
series of steps, with intermediate results being stored as objects. Thus whereas SAS and 
SPSS will give copious output from a regression, R will give minimal output and store 
the results in an object (a statistical “fit”) for subsequent interrogation by further R 
functions (Venables et al. 2009). 
 
1.2 How to install R? 
These instructions are given for R version 2.8.1 
 
1.2.1 The base system 
Here we give detailed instructions to download R. Please be aware that new versions 
can be released with some differences – the main R web page has details on new 
versions. 
1. Go to the web page of R: http://www.r-project.org/ 
2. In the left part, find CRAN and click there. 
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3. Now you can choose a mirror site to download the program. You can choose any 
mirror - here we illustrate using the first one in the USA, University of California, 
Berkeley. 
 

 
 
4. Then we choose our operating system (e.g. Windows in our example). Then click on 
“base”. 
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5. Finally we download the file R-2.8.1-win32.exe which executes R. 
 

 
 
 
1.2.2 Packages 
An R installation contains one or more libraries of packages. Some of these packages 
are part of the base installation. Others can be downloaded from CRAN (see Appendix 
A), which currently hosts over 1000 packages for various purposes (Dalgaard, 2002). A 
package can contain functions written in the R language, and data sets. Most packages 
implement functionality that users will probably not need to have loaded all the time 
(Dalgaard, 2002). 
 
Once a base installation is finished, you can install packages in R using: Open R and 
from the R window, go to the menu Packages. 
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Then select Install package(s), choose a mirror and then select the package(s) that you 
need to install. This process needs to be done once for each package. 
 
To use a package, you need to load the package. To do that, go to the menu Packages, 
then select Load package and choose the package(s) that you need. This process has to 
be done each time that you open a new session and wish to use a specific function in a 
package that is not in the base system. 
 
1.3 A sample session 
Before starting with this section be sure that you have a working installation of R. When 
you open R you should see the console window: 
 

 
 
 
R works fundamentally using a question-and-answer model: You enter a line with a 
command and press Enter. Then the program does something, prints the result if 
relevant, and asks for more input. When R is ready for input, it prints out its prompt, a 
“>” symbol (Dalgaard, 2002).  
 
One of the simplest possible tasks in R is to enter an arithmetic expression and receive a 
result (Dalgaard, 2002). The first line in red (font courier new) are inputs or instructions 
that we type, the second line is in blue (font courier new) are the outputs or answers 
from R. 
 
> 3+2    “Instruction or inputs” 
[1] 5    “Answers or Outputs” 
 
We also can perform other standard arithmetic calculations:  
 
> 4^2 
[1] 16 
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> sqrt(36) 
[1] 6 
> pi 
[1] 3.141593 
> exp(1) 
[1] 2.718282 
 
The number in brackets is the index of the first number on that line (Dalgaard, 2002). 
Consider the case of generating the sequence of integers from 50 to 100  
 
> 50:100 
 [1]  50  51  52  53  54  55  56  57  58  59  60  61  62  63 
[15]  64  65  66  67  68  69  70  71  72  73  74  75  76  77 
[29]  78  79  80  81  82  83  84  85  86  87  88  89  90  91 
[43]  92  93  94  95  96  97  98  99 100 
 
Here [15] indicates that 64 is the fifteen element in the vector of output from this 
command. 
 
One of the most common procedures in R is to store numbers or results. R, like other 
computer languages, has symbolic variables that are names that can be used to represent 
values (Dalgaard, 2002). To assign the value 10 to the variable a: 
 
> a<-10 
 
The two characters <- should be read as a single symbol: an arrow pointing to the 
variable to which the value is assigned. This is known as the assignment operator. 
Spacing around operators is generally disregarded by R, but notice that adding a space 
in the middle of a <- changes the meaning to “less than” followed by “minus” 
(Dalgaard, 2002). Also be aware that there is no immediately visible result, but from 
now on, a has the value 10 and can be used in subsequent arithmetic expressions. 
 
> a 
[1] 10 
> a*2 
[1] 20 
> a/5 
[1] 2 
> a+2 
[1] 12 
 
R allows overwriting variables, without providing any warning that you are redefining a 
variable that had previously been assigned a value. 
 
> a<-234 
> a 
[1] 234 
> a<-456.43 
> a 
[1] 456.43 
 
Technically R is an expression language with a very simple syntax. It is case sensitive, 
so A and a are different symbols and would refer to different variables. The set of 
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symbols which can be used in R names depends on the operating system. Normally all 
alphanumeric symbols are allowed plus ‘.’ and ‘_’ (Venables et al. 2009). There is, 
however, the limitation that the name must not start with a digit or a period followed by 
a digit (Dalgaard, 2002).  
 
> A 
Error: object "A" not found 
> 2<-10 
Error in 2 <- 10 : invalid (do_set) left-hand side to assignment 
> .3<-10 
Error in 0.3 <- 10 : invalid (do_set) left-hand side to assignment 

 
For entering small data sets we can use the function c(). This is a generic function 
which combines its arguments into a single data set. 
 
> c(2,43,56,43,12,34,56,76) 
[1]  2 43 56 43 12 34 56 76 
 
This is useful as a method to generate variables as a vector or list of data 
 
> x<-c(21,23,45,32,12,34,56,7,8,98) 
> x 
 [1] 21 23 45 32 12 34 56  7  8 98 
 
1.4 How to get help 
R has several ways to help the user. Some of these are: 
 
Command in R Result 
help(t.test) or 
?t.test 

These functions provide access to documentation. In the 
example R will provide documentation for the function t.test 

help.search(“anova”) Searches the help system for documentation matching a 
given character string. Names and titles of the matched help 
entries are displayed. In this example, a list of functions that 
are related to anova will be returned. 

apropos("test") Provides a list of command names that contain the pattern in 
quotes. This example lists commands that contain the word 
“test”. 

example(t.test) This initiates running an example, if available, of the use of 
the function specified by the argument function. 

help.start() Start the hypertext (currently HTML) version of R's online 
documentation. 

RSiteSearch("") Search for key words or phrases in the R-help mailing list 
archives, or R manuals and help pages, using the search 
engine at http://search.r-project.org and view them in a web 
browser. 

 
1.5 Documentation 
Additional documentation on R is available from several sources including: 
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1.5.1 Free documentation 
Edited by the R Development Core Team. http://cran.r-project.org/manuals.html 
Manuals, tutorials, etc. provided by users of R. http://cran.r-project.org/other-docs.html 
 
1.5.2 Books 
A list of books that are related to R. http://www.r-project.org/doc/bib/R-books.html 
 
1.6 Data import 
Large data objects will usually be read as values from external files rather than entered 
during an R session at the keyboard. R input facilities are simple with strict and 
somewhat inflexible requirements. There is a clear presumption by the designers of R 
that you will be able to modify your input files using other tools, such as file editors, to 
fit the requirements of R (Venables et al. 2009). 
 
The most convenient way to read data into R is via the function called read.table. It 
requires that data be in “ASCII format”; that is, a “flat file” as created with Windows’ 
NotePad or any plain-text editor, with extension .txt. The first line of the file can contain 
a header giving the names of the variables, a practice that is highly recommended 
(Dalgaard, 2002). Each subsequent line contains a row of data.  
 
Command in R: 
read.table(file, header = FALSE) 

file: the name of the file from which the data are to be read. Each row of the table 
appears as one line of the file. If it does not contain an absolute path, the file name is 
relative to the current working directory.  
header: logical value indicating whether the file contains the names of the variables as 
its first line. Default is FALSE 

 
The working directory can be changed by using the menu item File, then change dir, 
and select the directory that you want. Also the current working directory can be 
obtained by getwd() and changed by setwd(mydir), where mydir is a character string 
containing the path to the desired working directory (Dalgaard, 2002).  
 
Other commands in R to read data include: read.csv, read.csv2, read.delim, read.delim2 
and the foreign package that are functions for reading and writing data stored by 
statistical packages such as Minitab, S, SAS, SPSS, Stata, Systat and others.  
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2. Descriptive Statistics 
 
 
In sampled and whole population data, a measure of central tendency provides an 
assessment of an “average” of the data. A measure of dispersion, or a measure of 
variability, is an indication of the spread of measurements around the center of the 
distribution (Zar, 1999). 
 
Example (from Samuels & Witmer 2003, p. 29) 
Male mormon crickets (Anabrus simplex) sing to attract mates. A field researcher 
measured the duration of 51 unsuccessful songs, that is, the time until the singing male 
gave up and left his perch. Below are examples of computing basic descriptive statistics 
for such a dataset. 
 
4.3 24 6.6 7.3 1.5 2.6 5.6 3.9 9.4 6.2 1.6 6.5 0.2 2.7 17 4 2 
0.7 1.6 2.3 3.7 0.8 0.5 4.5 12 3.5 0.8 5.2 3.9 0.7 1.7 3.8 5 2 
4.5 1.8 1.2 0.7 0.7 4.2 4.7 2.2 1.4 2.8 8.6 3.7 3.5 1.2 3.7 14 4 

 
> cricket<-c(4.3,24.1,6.6,7.3,1.5,2.6,5.6,3.9,9.4,6.2,1.6,6.5,0.2,2.7, 
+ 17.4,4, 2, 0.7,1.6,2.3,3.7,0.8,0.5,4.5,11.5,3.5,0.8,5.2,3.9,0.7,1.7, 
+ 3.8,5,2,4.5,1.8,1.2,0.7,0.7,4.2,4.7,2.2,1.4,2.8,8.6,3.7,3.5,1.2,3.7, 
+ 14.1,4) 
> cricket 
 [1]  4.3 24.1  6.6  7.3  1.5  2.6  5.6  3.9  9.4  6.2  1.6  6.5  0.2 
[14]  2.7 17.4  4.0  2.0  0.7  1.6  2.3  3.7  0.8  0.5  4.5 11.5  3.5 
[27]  0.8  5.2  3.9  0.7  1.7  3.8  5.0  2.0  4.5  1.8  1.2  0.7  0.7 
[40]  4.2  4.7  2.2  1.4  2.8  8.6  3.7  3.5  1.2  3.7 14.1  4.0 
 
> mean(cricket) 
[1] 4.335294 
> median(cricket) 
[1] 3.7 
 
> var(cricket) 
[1] 19.64793 
> sd(cricket) 
[1] 4.432598 
> range(cricket) 
[1]  0.2 24.1 
 
> summary(cricket) 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  0.200   1.600   3.700   4.335   4.850  24.100 
 
Histograms 
Command in R: 

hist(x, breaks = "Sturges", freq = NULL, main , xlab , ylab,) 
x: vector of data values for which the histogram is to be constructed.  
breaks: a vector giving the breakpoints between histogram cells or a single number 
giving the number of cells for the histogram. Default is the algorithm of Sturges. 
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freq: logical; if TRUE, the histogram graphic is a representation of frequencies, the 
counts of data values in each cell of the histogram; if FALSE, the histogram is the 
fraction of data within each histogram cell (e.g. probability density) 
main: The main title . 
xlab: X axis label.  
ylab Y axis label. 

 
> hist(cricket, breaks =10,freq = T,  
+ main = "Histogram of cricket singing times", 
+ xlab = "Singing time (min)", 
+ ylab = "Frequency") 
 

 
 

> boxplot(cricket) 
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Note that a “+” at the start of a line indicates that this line is a continuation of the 
previous command line. As an exercise, add labels to the above boxplot using the same 
format as for the hist() command. 
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3. One and two sample tests 
 
3.1 One sample test 
R provides methods to use statistical tests to compare an observed mean value to a 
known or hypothetical mean, denoted µ0 (Selvin, 2004).  
 
The t-test: the command in R for a t-test: 
t.test(x, alternative = c("two.sided", "less", "greater"), mu = 0, conf.level = 0.95) 

x: vector containing the observations 
alternative: character string specifying the alternative hypothesis. Default is two.sided  
mu: hypothetical mean 
conf.level: confidence level of the interval. Default is 0.95 

 
Example (from Selvin 2004, p 209) 
An experimental process employed to purify drinking water, to be useful, must not 
change the acidity of the treated water (ideally it would maintain a neutral pH of 7.0). 
To assess the process, the mean of a sample of pH-values is compared to the 
hypothetical mean pH of 7.0.  The experimental process applied 24 times produces 24 
observations which are assumed to be independent and normally distributed. 
 
5.95 7.39 6.88 6.54 6.50 6.73 6.69 6.95 
7.58 6.62 6.96 6.90 6.93 6.32 7.22 6.36 
6.54 6.67 7.25 6.94 7.21 6.83 6.80 6.59 
 
> observation<- c(5.95, 7.39, 6.88, 6.54, 6.50, 6.73, 6.69, 6.95, 
+ 7.58, 6.62, 6.96, 6.90, 6.93, 6.32, 7.22, 6.36,  
+ 6.54, 6.67, 7.25, 6.94, 7.21, 6.83, 6.80, 6.59) 
 
> t.test(observation,mu=7.0) 
 
        One Sample t-test 
data:  observation  
t = -2.591, df = 23, p-value = 0.01633 
alternative hypothesis: true mean is not equal to 7  
95 percent confidence interval: 
 6.651562 6.960938  
sample estimates: 
mean of x  
  6.80625  
 
In conclusion the null hypothesis is rejected at the 5% level, because the p-value is 
below 0.05. The mean of the population that generated the sample is different than 7. 
 
Other commands in R for single population tests are: wilcox.test, prop.test. Another 
very common test of one population is the Z-test. We are unaware of a command in R 
for this test, but you can find a complete procedure in Verzani 2002, p. 62. 
 
3.2 Two sample test 
One of the most common procedures in biostatistics is the comparison of two samples to 
infer whether differences exist between two observed populations (Zar, 1999). One 
command for this is: 
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Command in R: 
t.test(x, y , alternative = c("two.sided", "less", "greater"), mu = 0, paired = FALSE, 
var.equal = FALSE, conf.level = 0.95) 

x: vector with observations of sample 1 
y: vector with observations of sample 2 
alternative: character string specifying the alternative hypothesis. Default is two.sided  
mu: difference in means. Default is 0 
paired: a logical indicating whether you want a paired t-test. Default is false 
var.equal: a logical indicating whether to treat the variances as equal. Default is false 
conf.level: confidence level of the test. Default 0.95 

 
3.2.1 t test unequal variance 
Example (from Quinn & Keough 2002, p 40) 
Furness & Bryant (1996) studied energy budgets of breeding northern fulmars 
(Fulmarus glacialis) in Shetland. As part of their study, they recorded various 
characteristics of individually labeled male and female fulmars. We will focus on 
differences in metabolic rate between sexes. There were eight males and six females 
labeled. The H0 was that there is no difference between the sexes in the mean metabolic 
rate of fulmars. This is an independent, non-paired comparison because individual 
fulmars can only be either male or female. 
 
Male 2950 2308.7 2135.6 1945.6 1195.5 843.3 525.8 605.7 
Female 1956.1 1490.5 1361.3 1086.5 1091 727.7 - - 
 
Note that the ranges (and variances) are very different in these two samples. The small 
and unequal sample sizes, in conjunction with the unequal variances, indicate that a t 
test based on different variances is more appropriate (Quinn & Keough 2002). That is 
why in the command t.test, we don’t use the argument var.equal, because the default is 
false. Note that in the below, the length of the two samples are the same but we use 
“NA” to indicate there is no data value. 
 
> Male<-c(2950,2308.7,2135.6,1945.6,1195.5,843.3,525.8,605.7) 
> Female<-c(1956.1,1490.5,1361.3,1086.5,1091,727.7, NA, NA) 
> t.test(Male, Female) 
 
        Welch Two Sample t-test 
data:  Male and Female  
t = 0.7732, df = 10.468, p-value = 0.4565 
alternative hypothesis: true difference in means is not equal to 0  
95 percent confidence interval: 
 -518.8042 1075.3208  
sample estimates: 
mean of x mean of y  
 1563.775  1285.517 

 
We would not reject the H0 at the 95% confidence level and thus conclude there was no 
statistically significant difference in mean metabolic rate of fulmars between sexes 
(Quinn & Keough 2002). 
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3.2.2 Paired t test 
Now we consider the comparison of two samples that are not independent but are 
paired. In this design, the observations occurs in pairs, the observational units in a pair 
are linked in some way, so they have more in common with each other that with other 
members of another pair (Samuels & Witmer, 2003). 
 
Example (from Quinn & Keough 2002 , p 41) 
Elgar et al. (1996) exposed 17 orb spiders each to dim and higher light conditions and 
recorded two aspects of web structure under each condition. The H0’s are that the two 
variables (vertical diameter and horizontal diameter of the orb web) were the same in 
dim and higher light conditions. Because the same spider spun their web in both light 
conditions, then it is appropriate to use a paired comparison.  
 

PAIR VERTDIM HORIZDIM VERTLIGH HORIZLIGH 
1 300 295 80 60 
2 240 260 120 140 
3 250 280 170 160 
4 220 250 90 120 
5 160 160 150 180 
6 170 150 110 90 
7 300 290 260 120 
8 180 120 240 220 
9 200 210 190 210 
10 80 120 120 150 
11 190 240 160 160 
12 270 270 300 330 
13 130 150 160 100 
14 190 210 300 240 
15 190 200 280 190 
16 120 160 190 170 
17 180 160 100 100 

 
> HORIZDIM<-c(295,260,280,250,160,150,290,120,210,120,240,270,150,210, 
+200,160,160) 
> HORIZLIGH<-c(60,140,160,120,180,90,120,220,210,150,160,330,100,240, 
+190,170,100) 
> t.test(HORIZDIM, HORIZLIGH, paired=T) 
        Paired t-test 
data:  HORIZDIM and HORIZLIGH  
t = 2.1482, df = 16, p-value = 0.04735 
alternative hypothesis: true difference in means is not equal to 0  
95 percent confidence interval: 
  0.6085725 91.7443687  
sample estimates: 
mean of the differences  
               46.17647  
 
So we would reject the H0 at the 95% level and conclude that, for the population of orb 
spiders, there is a difference in the mean horizontal diameter of spider webs between 
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higher light and dim conditions (Quinn & Keough 2002). We leave the comparison of 
the vertical diameter as an exercise. 
 
Other commands in R for two-sample tests include: wilcox.test, prop.test. 
 

4. Single factor Analysis of variance 
 
The above methods are appropriate to analyze measurements of a single variable from 
two samples. For observations of a variable using three or more samples, multi-sample 
analysis is required. To test the null hypotheses H0: µ1 = µ2 = … = µk, where k is the 
number of experimental groups, or samples, a standard method is to carry out an 
analysis of variance (Zar, 1999).  
 
4.1 Parametric Analysis of variance (ANOVA) 
There are several R commands to perform this analysis. We here use the command aov, 
because using various formulas in the arguments allows several different types of design 
to be considered. The end of this section mentions other commands for ANOVA. 
 
Command in R: 
aov(formula, data = NULL) 

formula:  A formula specifying the model. A formula is an expression of the form y ~ 
model that is interpreted as a specification that the response y is modeled by a linear 
predictor specified symbolically for the desired model. 
data:  A data set in R in which the variables specified in the formula will be found.  

 
Example (from Zar 1999, p. 180) 
Nineteen pigs are assigned at random among four experimental groups. Each group is 
fed a different diet. The data are pig body weights, in kilograms, after being raised on 
these diets. We wish to ask whether pig weights are the same for all four diets. 
 

Feed1 Feed2 Feed3 Feed4 
60.8 68.7 102.6 87.9 
57 67.7 102.1 84.2 
65 74 100.2 83.1 
58.6 66.3 96.5 85.7 
61.7 69.8  90.3 

 
Below illustrates the correct arrangement of the data in a .txt file and then we import the 
data to R (see section 1.6). The data format in the .txt file is: 
weights diet 
60.8  Feed1 
57  Feed1 
65  Feed1 
58.6  Feed1 
61.7  Feed1 
68.7  Feed2 
67.7  Feed2 
74  Feed2 
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66.3  Feed2 
69.8  Feed2 
102.6  Feed3 
102.1  Feed3 
100.2  Feed3 
96.5  Feed3 
87.9  Feed4 
84.2  Feed4 
83.1  Feed4 
85.7  Feed4 
90.3  Feed4 
 
We create this file in our working directory (assumed to be C:) with the name pigs.txt 
and read it into the R variable “pigs” (see section 1.6 for more details). We will use this 
example also for section 4.2. 
 
> pigs<-read.table("pigs.txt", header=T) 
> exit_pigs<-aov(weights~diet, data=pigs) 
> summary(exit_pigs) 
            Df Sum Sq Mean Sq F value    Pr(>F)     
diet         3 4226.3  1408.8  164.64 1.061e-11 *** 
Residuals   15  128.4     8.6                       
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
We can reject H0, implying that the mean weights of pigs on the four diets are not equal. 
Note that we don’t know from this analysis which of the treatments is the one providing 
highest pig weights, or a ranking of the various diets for this objective. A multiple 
comparison test (see section 5) would be used for further analysis of these additional 
questions. 
 
Other commands in R: anova, Anova, lm, anova.lm. 
 
4.2 Assumptions 
The decompositions of the variability in the observations through an analysis of 
variance is just an algebraic relationship. To use the method to test formally for no 
differences in the means of various treatments requires that certain assumptions be 
satisfied. Specifically, these assumptions are that the residuals are normally and 
independently distributed with mean zero and constant but unknown variance 
(Montgomery, 2001).  
 
4.1.1 Normality 
Here we explain how to test the hypothesis that the residuals follow a normal 
distribution. We give details for the Shapiro Wilk test and the normal quantile quantile 
plots or q-q plots. The first step to test the assumption of normality is to obtain the 
residuals, using the following command (we continue with the last example) 
 
> exit_pigs$residuals 
 
   1     2     3     4     5     6     7     8     9    10    11  



 19 

 0.18 -3.62  4.38 -2.02  1.08 -0.60 -1.60  4.70 -3.00  0.50  2.25  
   12    13    14    15    16    17    18    19  
 1.75 -0.15 -3.85  1.66 -2.04 -3.14 -0.54  4.06  

 
Command in R: 
Shapiro.test(x) 
qqnorm(x) following with qqline(x). 

x:  Numeric vector of data values. Missing values are allowed. 
 

> shapiro.test(exit_pigs$residuals) 
        Shapiro-Wilk normality test 
data:  exit_pigs$residuals  
W = 0.9511, p-value = 0.4132 
 
Given the value of p we cannot reject the H0, and thus the evidence is that the data have 
a normal distribution. 
 
For the graphical procedure: 
> qqnorm(exit_pigs$residuals)    
**Don’t close the window with the graph  
> qqline(exit_pigs$residuals) 

 
Given that in general the dots are close to the line, it is reasonable to infer that the data 
follow a normal distribution. We have to be careful because purely graphical methods 
are always subject to the interpretation of the researcher. 
 
Other commands in R: The package nortest has several tests of normality including 
Anderson-Darling, Cramer-von Mises and Lilliefors. 
 
4.1.2 Homogeneity of variances (Homoscedasticity) 
If we have three or more samples, and we compute a variance for each, then we can test 
the hypothesis that all sample came from populations with identical variances (Zar, 
1999). Here we explain Bartlett’s test and the plot of residuals against fitted values; we 
also use the data from section 4.1. 
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Command in R: 
bartlett.test(formula, data) 

formula:  Formula of the form lhs ~ rhs where lhs gives the data values and rhs the            
corresponding groups.  
data:  Data frame containing the variables in the formula. 

 
> bartlett.test(weights~diet, data=pigs) 
        Bartlett test of homogeneity of variances 
data:  weights by diet  
Bartlett's K-squared = 0.0328, df = 3, p-value = 0.9984 
 
From this test we can say that we have homogeneity of variances. 
 
For the graphical procedure: 
> plot(exit_pigs$fitted.values, exit_pigs$residuals, main = "  
+ Residuals vs Fitted", xlab="Fitted", ylab="Residuals") 

 
Constancy of the residual variance is shown in these plots by the plots having about the 
same extension of scatter of the residual around zero for each factor level or treatment 
(Kutner et al. 2005). Then in this particular case the graph indicates that we have 
homogeneity of variances. 
 
Other commands in R: levene.test (Package car) 
 
4.3 Nonparametric Analysis (Kruskal- Wallis) 
If a set of data is collected according to a completely randomized design, it is possible 
to test nonparametrically for difference among groups. This may be done by the 
Kruskal-Wallis test, often called an analysis of variance by ranks. This test may be used 
in situations where the parametric single-factor ANOVA is not applicable (Zar, 1999).  
 
Command in R: 
kruskal.test(formula, data) 

formula:  Formula of the form lhs ~ rhs where lhs gives the data values and rhs the            
corresponding groups.  
data:  Data frame containing the variables in the formula. 
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Example (Zar 1999, p. 197) 
An entomologist is studying the vertical distribution of a fly species in a deciduous 
forest and obtains five collections of the flies in three different vegetation layers: herb, 
shrub and tree. The entomologist want to test the H0: The abundance of the flies is the 
same in all three vegetation layers. 
 

Herbs 14 12.1 9.6 8.2 10.2 
Shrubs 8.4 5.1 5.5 6.6 6.3 
Trees 6.9 7.3 5.8 4.1 5.4 

 
The data have to be in a txt file in the following way: 
 
abundance layers 
14  Herbs 
12.1  Herbs 
…  … 
4.1  Trees 
5.4  Trees 
 
We create this file in our working directory with the name flies (see section 1.6): 
 
> flies<-read.table("flies.txt", header=T) 
> bartlett.test(abundance~layers, data=flies) 
 
        Bartlett test of homogeneity of variances 
data:  abundance by layers  
Bartlett's K-squared = 1.7057, df = 2, p-value = 0.4262 
 

Since we don’t have homogeneity of variance, we should perform a Kruskal-Wallis test. 
 
> kruskal.test(abundance~layers, data=flies) 
 
        Kruskal-Wallis rank sum test 
data:  abundance by layers  
Kruskal-Wallis chi-squared = 8.72, df = 2, p-value = 0.01278 
 
We can conclude that the abundance of the flies is different in the three layers of 
vegetation. 
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5. Multiple Comparison Tests 
 
Suppose that in conducting an analysis of variance the null hypothesis is rejected. Thus, 
there are differences between the treatment means, but exactly which means differ is not 
specified. Sometimes in this situation, further comparison and analysis among groups of 
treatment means may be useful. The procedures for making these comparisons are 
usually called multiple comparison methods (Montgomery, 2001). In general these 
methods consider the null hypothesis H0: µA = µB versus the alternative hypothesis, 
where the subscripts denote any possible pair of groups  (Zar, 1999) 
 
5.1 Tukey test 
A much-used multiple comparison procedure is the Tukey test, also know as the 
honestly significant difference test (Zar, 1999).  
 
Command in R: 
HSD.test(y, trt, DFerror, MSerror, alpha = 0.05, group=TRUE) 

y: Variable response   
trt: Treatments   
DFerror: Degrees of freedom of the residuals. Take from the ANOVA table 
MSerror: Mean Square Error of the residuals. Take from the ANOVA table 
alpha: Significant level. 
group: TRUE or FALSE. Use always TRUE. 

For this command we need the package agricolae (see section 1.2.2). 
 
Example (Quinn & Keough 2002, p. 174) 
Medley & Clements (1998) sampled a number of stations (between four and seven) on 
six streams known to be polluted by heavy metals in the Rocky Mountain region of 
Colorado, USA. They recorded zinc concentration, and species richness and species 
diversity of the diatom community and proportion of diatom cells that were the early-
successional species, Achanthes minutissima. The first analysis compares mean diatom 
species diversity (response variable) across the four zinc-level groups (categorical 
predictor variable), zinc level treated as a fixed factor. The H0 was no difference in 
mean diatom species diversity between zinc-level groups. 
 

ZINC DIV ZINC DIV ZINC DIV ZINC DIV ZINC DIV 
BACK 2.27 MED 2.19 LOW 1.83 MED 1.75 HIGH 1.04 
HIGH 1.25 MED 2.1 LOW 1.88 LOW 2.83 LOW 2.18 
HIGH 1.15 BACK 2.2 MED 2.02 BACK 1.53 BACK 1.89 
MED 1.62 MED 2.06 MED 1.94 BACK 0.76 HIGH 1.37 
BACK 1.7 HIGH 1.9 LOW 2.1 MED 0.8 LOW 1.4 
HIGH 0.63 HIGH 1.88 LOW 2.38 LOW 1.66 BACK 1.98 
BACK 2.05 HIGH 0.85 HIGH 1.43 MED 0.98   

 
The data have to be in a txt file in the following way: 
ZINC   DIV 
BACK   2.27 
HIGH   1.25 
…   … 
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LOW   1.66 
MED   0.98 
 
We create this file in our working directory with the name streams (see section 1.6). 
 
> streams<-read.table("streams.txt", header=T) 
> exit_streams<-aov(DIV~ZINC, data=streams) 
> summary(exit_zinc) 
            Df Sum Sq Mean Sq F value  Pr(>F)   
ZINC         3 2.5666  0.8555  3.9387 0.01756 * 
Residuals   30 6.5164  0.2172                   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
We can reject H0. Now to see the difference between each level of zinc we perform a 
Tukey test. 
 
> HSD.test(streams$DIV, streams$ZINC, 30, 0.2172, group=T) 
 
HSD Test for streams$DIV  
                                       ...... 
Alpha                                0.050000 
Error Degrees of Freedom            30.000000 
Error Mean Square                    0.217200 
Critical Value of Studentized Range  3.845401 
 
Treatment Means 
  streams.ZINC streams.DIV   std.err replication 
1         BACK    1.797500 0.1715658           8 
2         HIGH    1.277778 0.1422906           9 
3          LOW    2.032500 0.1573298           8 
4          MED    1.717778 0.1676701           9 
 
Honestly Significant Difference 0.6157647 
Harmonic Mean of Cell Sizes  8.470588 
 
Different HSD for each comparison 
Means with the same letter are not significantly different. 
 
Groups, Treatments and means 
a        LOW     2.0325  
ab       BACK    1.7975  
ab       MED     1.717778  
 b       HIGH    1.277778  
   trt    means  M        N   std.err 
1  LOW 2.032500  a 8.470588 0.1573298 
2 BACK 1.797500 ab 8.470588 0.1715658 
3  MED 1.717778 ab 8.470588 0.1676701 
4 HIGH 1.277778  b 8.470588 0.1422906 
 
The only H0 to be rejected is that of no difference in diatom diversity between sites with 
low zinc and sites with high zinc (Samuels & Witmer, 2003). We leave as exercise the 
following: check the assumptions (normality and homoscedasticity) of the model and 
perform the Tukey test for the example in section 4.1. 
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5.2 Least significant difference (LSD) test  
Command in R: 
LSD.test(y, trt, DFerror, MSerror, alpha = 0.05,  group=TRUE) 

y: Variable response   
trt: Treatments   
DFerror: Degrees of freedom of the residuals. Take from the ANOVA table 
MSerror: Mean Square Error of the residuals. Take from the ANOVA table 
alpha: Significant level. 
group: TRUE or FALSE. Use always TRUE. 

For this command we need the package agricolae (see section 1.2.2). 
 
Example (Zar 1999, p. 210) 
Researchers want to perform an ANOVA table and a multiple test comparison. For the 
following data: 
 

Grayson's Pond 28.2 33.2 36.4 34.6 29.1 31 
Beaver Lake 39.6 40.8 37.9 37.1 43.6 42.4 
Angler's Cove 46.3 42.1 43.5 48.8 43.7 40.1 
Appletree Lake 41 44.1 46.4 40.2 38.6 36.3 
Rock River 56.3 54.1 59.4 62.7 60 57.3 

 
The data are strontium concentrations (mg/ml) in five different bodies of water. The 
data have to be in a txt file in the following way: 
strontium bodies 
28.2  Grayson 
33.2  Grayson 
…  … 
60  Rock 
57.3  Rock 
 
We create this file in our working directory with the name water (see section 1.6). 
 
> water<-read.table("water.txt", header=T) 
> exit_water<-aov(strontium~bodies, data=water) 
> summary(exit_water) 
            Df  Sum Sq Mean Sq F value    Pr(>F)     
bodies       4 2193.44  548.36  56.155 3.948e-12 *** 
Residuals   25  244.13    9.77                       
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
Because a significant p value resulted from the analysis of variance, the LSD test is now 
applied on the means. 
 
> LSD.test(water$strontium, water$bodies, 25, 9.77, group=T) 
 
LSD t Test for water$strontium  
                            ...... 
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Alpha                     0.050000 
Error Degrees of Freedom 25.000000 
Error Mean Square         9.770000 
Critical Value of t       2.059539 
 
Treatment Means 
  water.bodies water.strontium  std.err replication 
1       Angler        44.08333 1.257621           6 
2        Apple        41.10000 1.496663           6 
3       Beaver        40.23333 1.033011           6 
4      Grayson        32.08333 1.308540           6 
5         Rock        58.30000 1.239624           6 
 
Least Significant Difference 3.716692 
Means with the same letter are not significantly different. 
 
Groups, Treatments and means 
a        Rock    58.3  
 b       Angler          44.08333  
 bc      Apple   41.1  
  c      Beaver          40.23333  
   d     Grayson         32.08333  
      trt    means    M N  std.err 
1    Rock 58.30000    a 6 1.239624 
2  Angler 44.08333    b 6 1.257621 
3   Apple 41.10000   bc 6 1.496663 
4  Beaver 40.23333    c 6 1.033011 
5 Grayson 32.08333    d 6 1.308540 

 
We leave as exercise the following: give the appropriate conclusions from this analysis 
of last example, check the assumptions (normality and homoscedasticity) of the model 
and perform the Tukey test for the example in this section. 
 
Other commands in R: TukeyHSD, waller.test (package agricolae) 
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6. Other Analysis of variance 
 
6.1 Randomized block design 
In any experiment, variability arising from a nuisance factor can affect the results. We 
define a nuisance factor as a design factor that probably has an effect on the response, 
but we are not interested in that effect. When the nuisance source of variability is known 
and controllable, a design technique called blocking can be used to systematically 
eliminate its effect on the statistical comparison among treatments (Montgomery, 2001). 
The statistical term “block” is conceptually an extension of the term “pair” introduced 
in section 3.2.2 (Zar, 1999). 
 
6.1.1 Parametric Analysis of variance 
The randomized block ANOVA is an extension of the one – way ANOVA presented in 
section 4.1. 
 
Command in R: 
aov(formula, data = NULL) 

formula:  A formula specifying the model. Formula of the form a ~ b + c, where a, b 
and c give the data values and corresponding groups and blocks, respectively. 
data:  A data frame in which the variables specified in the formula will be found.  

 
Example (from Samuels & Witmer 2003, p. 487) 
Researchers were interested in the effect that acid has on the growth rate of alfalfa 
plants. They created three treatment groups in an experiment: low acid, high acid and 
control. The response variable in their experiment was the average height of the alfalfa 
plants in a Styrofoam cup after five days of growth. The observational unit was a cup, 
rather than individual plants. They had 5 cups for each of the 3 treatments, for a total of 
15 observations. However, the cups were arranged near a window and they wanted to 
account for the effect of differing amounts of sunlight. Thus they created 5 blocks and 
randomly assigned the 3 treatments within each block. The data are given in the 
following table: 

 treatments 
block low high control 
1 1.58 1.1 2.47 
2 1.15 1.05 2.15 
3 1.27 0.5 1.46 
4 1.25 1 2.36 
5 1 1.5 1 

 
The data have to be in a txt file in the following way: 
height trt block 
2.47 control block1 
2.15 control block2 
1.46 control block3 
2.36 control block4 
1 control block5 
… … … 
1.1 high block1 
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1.05 high block2 
0.5 high block3 
1 high block4 
1.5 high block5 
 
We create this file in our working directory with the name alfalfa (see section 1.6). 
 
> alfalfa<-read.table("alfalfa.txt", header=T) 
> exit_alfalfa<-aov(height~trt + block, data=alfalfa) 
> summary(exit_alfalfa) 
            Df  Sum Sq Mean Sq F value  Pr(>F)   
trt          2 1.98601 0.99301  5.4709 0.03182 * 
block        4 0.83963 0.20991  1.1565 0.39740   
Residuals    8 1.45205 0.18151                   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
The p value for the treatment (trt) is small, indicating that the differences between the 
three sample means are greater than would be expected by chance alone (Samuels & 
Witmer, 2003). 
 
6.1.2 Nonparametric analysis of variance (Friedman) 
Friedman’s test is a nonparametric analysis that may be performed on a randomized 
block experimental design, and it is especially useful with data which do not meet the 
parametric analysis of variances assumptions of normality and homoscedasticity (Zar, 
1999). 
 
Command in R: 
friedman.test(formula, data) 

formula: Formula of the form a ~ b | c, where a, b and c give the data values and 
corresponding groups and blocks, respectively. 
data:  Data frame in which the variables specified in the formula will be found.  

 
Example (from Zar 1999, p. 264) 
We want to investigate the H0 that the mean weight gain of guinea pigs is the same on 
each of four specified diets. Each guinea pig is housed in a separate cage. A block 
consists of a group of four animals that we can be reasonably assured will experience 
identical environmental conditions (light, temperature, draft, noise, etc). Each block has 
each of its four animals assigned at random to one of the four experimental diets, so that 
each animal in a given block is to receive a different diet.  The data (weight gains, in 
grams) are summarized in the following table. 
 

 diets 
Blocks 1 2 3 4 
1 7 5.3 4.9 8.8 
2 9.9 5.7 7.6 8.9 
3 8.5 4.7 5.5 8.1 
4 5.1 3.5 2.8 3.3 
5 10.3 7.7 8.4 9.1 
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The data have to be in a txt file in the following way: 
weight diets blocks 
7 diet1 block1 
9.9 diet1 block2 
… … …. 
3.3 diet4 block4 
9.1 diet4 block5 
 
We create this file in our working directory with the name guinea (see section 1.6). 
 
> guinea<-read.table("guinea.txt", header=T) 
> friedman.test(weight~ diets | blocks, data=guinea) 
 
        Friedman rank sum test 
data:  weight and diets and blocks  
Friedman chi-squared = 10.68, df = 3, p-value = 0.01359 
 
Therefore, we reject H0.  
 
6.2 Factorial structure 
Many experiments involve the study of the effects of two or more factors. In general, 
factorial designs are most efficient for this type of experiment. By a factorial design, we 
mean that in each complete trial or replication of the experiment all possible 
combinations of the levels of the factors are investigated (Montgomery, 2001). 
 
Command in R: 
aov(formula, data = NULL) 

formula:  A formula specifying the model. Formula of the form a ~ b * c, where a, b 
and c give the data values and corresponding factor1 and factor2, respectively. 
data:  A data frame in which the variables specified in the formula will be found.  

  
Example (from Samuels & Witmer 2003, p. 6) 
Before new drugs are given to humans subjects, it is common practice to test them first 
in dogs or other animals. In part of one study, a new drug under investigation was given 
to 4 male and 4 female dogs, at doses 8mg/kg and 25mg/kg. Alkaline phosphatase level 
(measured in U/Li) was measured from blood samples in order to screen for toxicity 
problems in dogs before starting with humans. The design of this experiment allows for 
the investigation of the interaction of two factors: sex of the dog and dose. Data are 
shown in the following table: 
 

Dose Male Female 
191 150 
154 127 
194 152 

8 

183 105 
80 141 
49 153 
78 171 

25 

71 197 
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The data have to be in a txt file in the following way: 
Sex Dose   Level 
M dose8   191 
M dose8   154 
M dose8   194 
M dose8   183 
… … … 
F dose25   141 
F dose25   153 
F dose25   171 
F dose25   197 
 
We create this file in our working directory with the name dogs (see section 1.6). 
 
> dogs<-read.table("dogs.txt", header=T) 
> exit_dogs<-aov(Level~ Dose*Sex, data=dogs) 
> summary(exit_dogs) 
            Df  Sum Sq Mean Sq F value    Pr(>F)     
Dose         1  6241.0  6241.0 15.4289  0.002006 **  
Sex          1  2401.0  2401.0  5.9357  0.031367 *   
Dose:Sex     1 20449.0 20449.0 50.5538 1.230e-05 *** 
Residuals   12  4854.0   404.5                       
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
From the last analysis we can reject all H0. The factors sex and dose interacted in the 
following sense:  For females the effect of increasing the dose from 8 to 25 was positive 
(the average increases), but for males the effect of increasing the dose from 8 to 25 was 
negative (the average decreases). We can see this in the interaction plot. 
 
> interaction.plot(dogs$Dose, dogs$Sex, dogs$Level,  
+ xlab="Dose", ylab="Level", trace.label="Sex") 
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Example (from Samuels & Witmer 2003, p. 490) 
A plant physiologist investigated the effect of mechanical stress on the growth of 
soybean plants. Individually potted seedlings were randomly allocated to four treatment 
groups of 13 seedlings each. Seedlings in two groups were stressed by shaking for 20 
minutes twice daily, while two control groups were not stressed. Thus, the first factor in 
the experiment was presence or absence of stress. Also, plants were growth in either low 
or moderate light. Thus the second factor was amount of light. This experiment is an 
example of a 2*2 factorial experiment. 
 

Low moderate 
Control stress control stress 
264 235 314 283 
200 188 320 312 
225 195 310 291 
268 205 340 259 
215 212 299 216 
241 214 268 201 
232 182 345 267 
256 215 271 326 
229 272 285 241 
288 163 309 291 
253 230 337 269 
288 255 282 282 
230 202 273 257 

 
The data have to be in a txt file in the following way: 
 
area shaking   light 
264 control      low 
200 control      low 
225 control      low 
268 control      low 
… …      … 
291 stress      moderate 
269 stress      moderate 
282 stress      moderate 
257 stress      moderate 
 
We create this file in our working directory with the name soybean (see section 1.6). 
 
> soybean<-read.table("soybean.txt", header=T) 
> exit_soybean<-aov(area~shaking*light, data=soybean) 
> summary(exit_soybean) 
              Df Sum Sq Mean Sq F value    Pr(>F)     
shaking        1  14858   14858 16.5954 0.0001725 *** 
light          1  42752   42752 47.7490 1.010e-08 *** 
shaking:light  1     26      26  0.0294 0.8645695     
Residuals     48  42976     895                       
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--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
> interaction.plot(soybean$shaking, soybean$light, soybean$area, 
+ xlab="shaking", ylab="area", trace.label="light") 

 
Conclusions from this example are left as an exercise. 
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7. Regression and correlation 
 
7.1 Regression 
In many problems there are two or more variables that are related, and it is of interest to 
model and explore this relationship. In general, suppose that there is a single dependent 
variable or response y that depends on k independent variables, for example, x1, x2, …, 
xk. The relationship between these variables is characterized by a mathematical model 
called a regression model (Montgomery, 2001).  
 
Command in R: 
lm(formula, data = NULL) 

formula:  A formula specifying the model.  
data:  A data frame in which the variables specified in the formula will be found.  

 
Example (from Quinn & Keough 2002, p.79) 
Christensen et al. (1996) studied the relationships between coarse woody debris (CWD) 
and shoreline vegetation and lake development in a sample of 16 lakes in North 
America. The main variables of interest are the density of cabins (no. km-1), density of 
riparian trees (trees km-1), the basal area of riparian trees (m2 km-1), density of coarse 
woody debris (no. km-1) and basal area of coarse woody debris (m2 km-1). The 
researchers are interested in fitting a linear regression model to CWD basal area against 
riparian tree density (RTD). 
 

LAKE CWD RTD LAKE CWD RTD LAKE CWD RTD 
Bay 121 1270 Palmer 65 1330 Lake_hills 97 976 
Bergner 41 1210 Street 52 964 Towanda 1 771 
Crampton 183 1800 Laura 12 961 Black oak 4 833 
Long 130 1875 Annabelle 46 1400 Johnson 1 883 
Roach 127 1300 Joyce 54 1280 Arrowhead 4 956 
Tenderfoot 134 2150       

 
> CWD<-c(121,41,183,130,127,134,65,52,12,46,54,97,1,4,1,4) 
> RTD<-c(1270,1210,1800,1875,1300,2150,1330,964,961,1400,1280,976,771, 
+ 833,883,956) 
> exit_lakes<-lm(CWD~RTD) 
> summary(exit_lakes) 
Call: 
lm(formula = CWD ~ RTD) 
 
Residuals: 
   Min     1Q Median     3Q    Max  
-38.62 -22.41 -13.33  26.15  61.36  
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept) -77.09908   30.60801  -2.519 0.024552 *   
RTD           0.11552    0.02343   4.930 0.000222 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 36.32 on 14 degrees of freedom 
Multiple R-squared: 0.6345,     Adjusted R-squared: 0.6084  
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F-statistic:  24.3 on 1 and 14 DF,  p-value: 0.0002216 
 
The t test and the ANOVA F test cause us to reject the H0 that β1 equals zero. We would 
also reject the H0 that β0 equals zero, although this test is of little biological interest. The 
r2 value (0.634) indicates that we can explain about 63% of the total variation in CWD 
basal area by the linear regression with riparian tree density. We can predict CWD basal 
area for a new lake with 1500 trees km-1 in the riparian zone. Plugging 1500 into our 
fitted regression model:  

CWD basal area = -77.099 + 0.116*1500 
 
The predicted basal area of CWD is 96.901 m2 km-1 (Quinn & Keough 2002). 
 
7.2 Correlation 
In many kinds of biological data, the relationship between two (or more variables) is not 
of clearly of strict dependence between the variables. In such cases, the magnitude of 
one of the variables changes as the magnitude of the second variable changes, but it is 
not reasonable to consider there to be an independent variable and a dependent variable 
whch is causally related to it. In such situations, correlation, rather than regression, 
analysis is called for (Zar, 1999). 
 
Command in R: 
cor.test(x, y, method = c("pearson", "kendall", "spearman"), conf.level = 0.95) 

x, y: Numeric vectors of data values. x and y must have the same length.  
method: Character string indicating which correlation coefficient is to be used for the 
test. One of "pearson", "kendall", or "spearman", can be abbreviated. Default Pearson. 
conf.level: confidence level for the returned confidence interval. Default 0.95. 

 
Example (from Quinn & Keough 2002, p.73) 
Green (1997) studied the ecology of red land crabs on Christmas Island and examined 
the relationship between the total biomass of red land crabs and the density of their 
burrows within 25 m2 quadrats (sampling units) at five forested sites on the island. We 
will look at two of these sites: there were ten quadrats at Lower Site (LS) and eight 
quadrats at Drumsite (DS). Pearson’s correlation coefficient was considered appropriate 
for these data although more robust correlations were calculated for comparison. 
 

TOTMASS 2.15 2.27 4.31 2.58 3.23 1.83 1.54 2   DS 
BURROWS 39 38 61 79 35 39 45 28   
TOTMASS 4.36 4.01 3.33 2.63 4.46 3.96 4.18 4.21 2.54 4.29 LS 
BURROWS 38 37 27 18 41 33 40 29 25 38 

 
 
> BURROWS<-c(39,38,61,79,35,39,45,28) 
> TOTMASS<-c(2.15,2.27,4.31,2.58,3.23,1.83,1.54,2) 
> cor.test(BURROWS, TOTMASS) 
 
        Pearson's product-moment correlation 
data:  BURROWS and TOTMASS  
t = 1.0428, df = 6, p-value = 0.3372 
alternative hypothesis: true correlation is not equal to 0  
95 percent confidence interval: 
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 -0.4322803  0.8592175  
sample estimates: 
      cor  
0.3917155  
 
> cor.test(BURROWS, TOTMASS, method=c("spearman")) 
 
        Spearman's rank correlation rho 
data:  BURROWS and TOTMASS  
S = 69.9159, p-value = 0.6915 
alternative hypothesis: true rho is not equal to 0  
sample estimates: 
      rho  
0.1676677  
 
> cor.test(BURROWS, TOTMASS, method=c("kendall")) 
 
        Kendall's rank correlation tau 
data:  BURROWS and TOTMASS  
z = 0.1247, p-value = 0.9008 
alternative hypothesis: true tau is not equal to 0  
sample estimates: 
       tau  
0.03636965  
 

The H0 of no linear relationship between total crab biomass and number of burrows at 
DS could not be rejected. The same conclusion applies for monotonic relationships 
measured by Spearman and Kendall’s coefficients. So there was no evidence for any 
linear or more general monotonic relationship between burrow density and total crab 
biomass at site DS  (Quinn & Keough 2002). We leave the analysis of site LS as 
exercise. 
 
Other commands in R: cor.  
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